M2 internship catalog


  • Domain, Specialties : Radiochemistry
    Keywords: gas handling; electron irradiation; microfabrication; gas analysis ; instrumentation

    Research Unit : NIMBE / LIONS

    Summary

    The use of ionizing radiation has been proposed to be a low impact treatment of gaz pollutant, both from an energetic and environmental point of view. This master thesis investigates the effects of ionizing radiation (electron beams) on various gas compositions. The project examines decomposition mechanisms of pollutant gases under controlled irradiation conditions, in an electron microscope. Experimental work involves irradiation cell and gas line development, dose quantification and optimization of the effect of the reactor material.

    Full description

    Human activities, in particular industrial processing, are responsible for significant gas pollution, which has harmful effects on the ecosystem and is causing climate change. The main polluting gases are SOx, NOx, and volatile organic compounds, which mostly originates from the extraction and processing of oil and coal. In order to mitigate this pollution, numerous physical and chemical techniques have been developed, to either separate or transform pollutants: methods such as water absorption, solid absorption, or membrane separation. However, these different methods often involve significant energy consumption, either to ensure the effectiveness of the treatment or to regenerate the sorbent material, and can lead to secondary pollution through the production of solid or liquid waste.

    In this context, the use of ionizing radiation has been proposed to be a low impact treatment of gas pollutants. Exposure of matter to ionizing radiation generates the formation of free radicals, which are highly reactive species that participate in a cascade of chemical reactions and can ultimately alter the composition of the irradiated matter. These radiolytic phenomena, which can be problematic when affecting biological organisms in an uncontrolled manner, can conversely be exploited in gas treatment if used in a controlled way. The use of ionizing radiation in the mitigation of gas pollution has been considered for about 20 years, but is now attracting growing interest due to our ability to develop less demanding radiation sources.

    This master thesis investigates the effects of ionizing radiation (electron beams) on various gas compositions. The project examines decomposition mechanisms of pollutant gases under controlled irradiation conditions, in an electron microscope. Experimental work will involve irradiation cell and gas line development, electron dose quantification and optimization of the effect of the reactor material. Gas composition after irradiation will be characterized, either online by residual gas analysis (RGA) directly after irradiation, or ex situ using the various equipment available on the SUITABL platform of the LIONS laboratory.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: No
    • Application deadline: 30 novembre 2025

    Experimental skills

    Language : English

    Useful methods and technics: Electron microscopy, gas handling, microfabrication/microfluidics, gas analysis (RGA, µ-GC).
    Instrumental and experimental skills, as well as high-quality reporting are required.

    Computer languages and software: Standard softwares – Word, Excel.

    Links

    Supervisor

    Jean-Philippe RENAULT ; Corinne CHEVALLARD
    Phone: +33 1 69 08 15 50 ; +33 1 69 08 54 89
    Email: ;

    Head of the laboratory NIMBE / LIONS

    Antoine THILL; ; Tél. : +33 1 69 08 99 82


    November 30 2025
    February 2 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Domain, topic: Chemistry
    Keywords: Health, analytical chemistry, mass spectrometry, disease biomarkers

    Research Unit: NIMBE / LEDNA

    Development of an oligosaccharide purification method for glycomic analysis of biological samples

    Subject

    Mise en place d’une méthode de purification d’oligosaccharides pour l’analyse glycomique d’échantillons biologiques

    Detailed subject

    Mots-clés : Santé, chimie analytique, spectrométrie de masse, biomarqueurs de maladies.

    Durée : 6 mois
    Début souhaité : Février / Mars 2026
    Lieu : CEA Saclay (DRF/IRAMIS/NIMBE/LEDNA)

    Au sein du CEA Paris-Saclay, le Laboratoire ÉDifices NAnométriques (LEDNA) concentre ses recherches sur la création de matériaux nanométriques, avec des applications allant de la catalyse et du stockage d’énergie à la bio-analyse.

    Research project

    Le LEDNA a récemment développé des dispositifs miniaturisés intégrant des monolithes à porosités hiérarchisées. En collaboration avec le Laboratoire Innovations en spectrométrie de Masse pour la Santé (LI-MS), l’application des HPM dans les protocoles de purification des glycanes, N-liés ou libres, a démontré un fort potentiel pour simplifier et accélérer l’analyse glycomique. Cependant, l’emploi de ce dispositif dans un contexte hospitalier impose une facilité d’utilisation et des protocoles expérimentaux robustes et validés.

    Objective

    Dans ce cadre, le(la) candidat(e) sera chargé(e) d’optimiser et valider la méthode de purification des glycanes (N-liés ou libres) par extraction en phase solide (SPE) intégrée dans des dispositifs miniaturisés permettant de travailler avec de faibles volumes d’échantillons. Les conditions d’analyse par spectrométrie de masse (MALDI-TOF-MS) des glycanes ainsi purifiés seront également optimisées et validées.

    Main tasks

    • Formation au protocole d’analyse glycomique :
    • purification des glycanes (initialement N-liés ou libres) par extraction en phase solide (SPE),
    • analyse par spectrométrie de masse (MALDI-ToF-MS).
    • Conception de plans d’expériences pour déterminer les conditions optimales du protocole.
    • Évaluation de la méthode sur divers échantillons biologiques (lait maternel, plasma humain)
    • Essais en conditions réelles à partir d’échantillons de patients.

    Profil du/de la candidat(e)

    Étudiant issu de formation de niveau Master 2 ou école d’ingénieur avec une spécialisation en chimie analytique, biochimie ou sciences pharmaceutiques. Un goût pour le développement analytique serait un atout.

    Contacts :

    • Marc MALEVAL,
    • Gabriel MANSOUR,

    Les candidatures doivent être adressées par mail aux responsables du projet et doivent comporter une lettre de motivation et un CV.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Durée du stage : 6 mois
    • Niveau d’étude requis : Bac+5
    • Formation : Master 2
    • Poursuite possible en thèse : Oui
    • Date limite de candidature : 16 janvier 2026

    Experimental skills

    Langue : Anglais

    Méthodes, techniques : MALDI-TOF-MS, Extraction en Phase Solide

    Links

    Internship supervisor

    Marc Maleval
    Tél. : 01 69 08 49 33
    Email :


    October 8 2025
    October 9 2025
    6 month
    France

  • Domain, topic: CHEMISTRY
    Keywords: Solid-phase extraction, instrumentation, microextraction mass spectrometry

    Research Unit: NIMBE / LEDNA

    Subject

    Development of a miniaturized system for automated solid-phase extraction

    Detailed subject

    Durée : 5-6 mois
    Début souhaité : Février / Mars 2026
    Lieu : CEA Saclay (DRF/IRAMIS/NIMBE/LEDNA)

    Basé au CEA Saclay, le Laboratoire des EDifices Nanométriques (LEDNA) est axé sur la recherche fondamentale en nanosciences, son expertise porte sur le développement bottom-up de méthodes de synthèse et d’élaboration de nano-objets ou de matériaux nanostructurés originaux et ce, dans le but de développer des applications à fort impact sociétal dans les domaines de l’énergie, de l’environnement, de la santé et des matériaux composites fonctionnels.

    Projet de recherche :

    Au sein du LEDNA, des dispositifs miniaturisés intégrant des matériaux poreux ont été développés pour l’enrichissement d’analytes par Extraction sur Phase Solide (SPE). Néanmoins, les systèmes actuellement employés pour la manipulation des fluides au sein du dispositif sont peu compatibles avec des formats miniaturisés et une automatisation, ce qui limite intrinsèquement la simplification et la rapidité d’exécution des protocoles SPE.

    Objectif :

    Dans ce contexte, le stage proposé a pour objectif de développer un système de contrôle fluidique pour des dispositifs miniaturisés. Le/La candidat(e) participera en lien avec un doctorant à la conception et l’assemblage d’un système de contrôle fluidique, à son expérimentation et optimisation et à son évaluation dans des protocoles SPE.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: January 2026, 16th

    Experimental skills

    Language: English

    The candidate, a student from an engineering school or Master’s degree program with a specialization in physical chemistry or analytical chemistry, must demonstrate good communication skills, be able to work in a team, and appreciate instrumental and methodological development.

    LINKS

    Responsable du stage

    Marc Maleval
    Tél. : 01 69 08 49 33
    Email :


    January 16 2026
    February 2 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Offer description

    Information about the internship

    • Field / Topic: Condensed matter physics / photoelectrochemistry
    • Research Unit: SPEC/SPHYNX and SPEC/LNO
    • Internship place: CEA Saclay
    • Internship duration: 6 months
    • Level of study: Bachelor + 5 years
    • Training: Master 2 / Engineer
    • Continuation in PhD thesis: YES
    • Application deadline: 01/02/2026

    Internship description

    Short summary

    Production of clean hydrogen by solar water splitting can be improved by controlling charge transfer at the electrode – electrolyte interface. At the interface, the photoanode’s surface potential is responsible for band alignments and bending, and thus for charge separation during the photoelectrochemical reaction. During this internship we propose to growth hetero-structured photoanodes (Fe2O3/FTO and M-OOH/ Fe2O3/FTO with M = Fe, Co, Ni, Cu or Zn), to measure their surface potential and to correlate these findings with macroscopic photoelectrochemical activity.

    Extended subject

    Hydrogen production by solar water splitting (SWS) is a very noteworthy concept because it permits the direct storage of solar energy in the H2 chemical bonds. Moreover, it is a clean method and it uses abundant and not-expensive materials as electrodes. The optimization of materials used as photoelectrodes for this reaction represents an important challenge. The interface between the electrodes and the aqueous electrolyte is responsible for the charge transfer efficiency during SWS. Charge transfer at the interface is subject to the alignment between energy bands both in electrode and electrolyte side, and parameter such as surface potential plays a major role on the final band bendings and charge separation.

    This study focuses on the interface between photoelectrode and electrolyte by measuring the surface topography and potential of different heterostructures proposed as photoanodes using an Atomic Force Microscope (AFM) coupled to Kelvin Probe Force Microscope (KPFM) on the near field microscopy platform at the SPEC laboratory (IMAFMP). The samples consist of films of transition metal oxyhydroxide (M-OOH with M = Fe, Co, Ni, Cu or Zn) obtained by electrodeposition, deposited both on FTO substrate and Fe2O3/FTO photoanode.

    The intern will carry out: i) the growth of Fe2O3 photoanodes and catalysts films by aqueous chemical growth and electrodeposition; ii) Photoelectrochemical characterization of photoanodes (photocurrent and EIS) using the solar water splitting dedicated setup; iii) AFM and KPFM measurements. This study will allow us to correlate the local aspects (nanorods morphology, surface potential) with the macroscopic ones (photocurrent, interface characterization by EIS). Complementary physico-chemical characterizations (MEB, DRX, XPS) are also envisaged. The intern’s work is part of the ANR project OERKOP.

    Keywords

    Surface potential, AFM, KPFM, Solar water splitting, hematite photoanode,

    Candidate profile

    • Scientific skills: material science, condensed matter, photoelectrochemistry
    • Software / calculations : office, python for data treatement and spectra fit
    • Languages : English, French

    LINKS

    Supervisors

    • Cindy L. Rountree ()
    • Dana Stanescu ()


    February 1 2026
    February 15 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Domain, Specialties: Chimie des matériaux
    Keywords: Traitement de données, spectroscopie, patrimoine

    Unit: NIMBE/LAPA

    Summary

    L’objectif de ce stage est de collecter sur des mêmes zones d’échantillon des cartographies à trois longueurs d’onde 473, 532 et 785 nm. Les jeux de données collectés seront traités à l’aide de méthodes chimiométriques de fusion de données dites “multiblocs”. Des approches impliquant la chimiométrie ou l’intelligence artificielle peuvent être mises en œuvre pour optimiser les résultats.

    Full description

    Dans le cadre de la protection des métaux du patrimoine, la recherche de solutions efficaces et durables pour lutter contre la corrosion atmosphérique, en extérieur ou en contexte muséal, est un enjeu de première importance. Les métaux cuivreux du patrimoine sont recouverts d’une couche de produits de corrosion qui fait partie intégrante de l’œuvre et qui convient d’être protégée. Les traitements de protection du patrimoine sont donc appliqués directement sur la couche de produits de corrosion.

    Au sein du NIMBE-LAPA, des produits à base de sol-gel dopés en inhibiteur de corrosion non toxiques pour l’environnement (acides carboxyliques) sont développés et appliqués sur des objets cuivreux historiques représentatifs car corrodés [1]. La couche de produits de corrosion formée sur ces objets a une épaisseur de quelques dizaines de micromètres, et est constituée de phases minérales de type cuprite et brochantite. La sol dopé, appliqué à la surface pénètre dans les porosités de la couche, se gélifie en libérant les acides carboxyliques qui vont précipiter pour former un carboxylate de cuivre hydrophobe. Les interactions entre les phases minérales de la couche et les composés du traitement de protection sont complexes et se produisent à l’échelle micrométrique.

    Pour bien comprendre l’effet de ce traitement il est nécessaire d’effectuer des analyses de la distribution des différentes phases à cette échelle. Pour produire une image de la distribution de ces phases dans l’épaisseur de la couche, la spectroscopie Raman est une technique performante. Cependant l’ensemble de ces phases a des réponses différentes selon la longueur du laser mise en œuvre. Les phases minérales ont un bon rendement de diffusion Raman dans les longueurs d’onde du bleu au vert alors que les composés organiques, qui fluorescent, présentent des spectres plus lumineux dans le rouge et proche infrarouge.

    L’objectif de ce stage est de collecter sur des mêmes zones d’échantillons traités de larges cartographies aux longueurs d’onde 473, 532 et 785 nm (plusieurs centaines de micromètres en X et Y, avec une résolution de quelques micromètres). Les jeux de données collectés seront traités à l’aide de méthodes chimiométriques de fusion de données dites “multiblocs”. Ces méthodes permettent de combiner efficacement les informations issues des 3 sources laser (représentant trois blocs distincts), en exploitant les relations entre elles afin obtenir une analyse plus complète et précise des échantillons. L’analyse simultanée des 3 blocs offre une meilleure interprétation des phénomènes complexes en tirant parti de la complémentarité des données tout en compensant les limitations spécifiques à chaque bloc individuel [2].

    Pour garantir l’efficacité de ces méthodes, une étape de prétraitement des données est indispensable. Ce prétraitement inclut notamment la réduction du bruit, la correction des effets de fluorescence, etc… Cette étape est cruciale pour améliorer la qualité des données, maximisant ainsi l’efficacité des méthodes multiblocs. Des approches impliquant la chimiométrie ou l’intelligence artificielle peuvent être mises en œuvre pour optimiser les résultats.

    [1] S. Lob, D. Neff, T.-H. Tran-Thi, M.C. Richter, C. Rivron, Hydrophobic coating using sustainable sol-gel process doped with carboxylic acids to protect heritage copper artefacts, Prog. Org. Coatings. 186 (2024) 108035.

    [2] F. Ammari, L. Bassel, C. Ferrier, D. Lacanette, R. Chapoulie, B. Bousquet. Multi-block analysis coupled to laser-induced breakdown spectroscopy for sorting geological materials from caves. Talanta 159 (2016) 287-291.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: No
    • Application deadline: January 2026, 16th

    Experimental skills

    Langue : Anglais

    Méthods, Techniques:

    • Spectroscopie Raman
    • Chimiométrie
    • Intelligence artificielle

    Langages informatiques et logiciels :

    • Python

    Links

    Internship Supervisor

    Faten AMMARI
    Tél. : 01.69.08.49.74
    Email :

    Responsable

    Delphine NEFF
    Tél. : 01.69.08.33.40


    January 16 2026
    February 2 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Domain, Specialties : Biochemistry, Biophysics, Structural Biology
    Keywords: membrane proteins, TSPO, expression systems, optical spectroscopy, X-ray and neutron scattering (SAXS/SANS)

    Research Unit : LLB/MMB

    Summary

    Membrane proteins lie at the heart of cellular life and represent nearly 60% of current therapeutic targets. Yet, they remain poorly characterized: barely 3% of the structures in the Protein Data Bank (PDB) correspond to them. Their study is therefore a major scientific challenge, especially when it comes to producing them in a native and functional form.
    We are interested in TSPO, a small and intriguing mitochondrial membrane protein present in the nervous system. Its exact role remains debated, but TSPO is already a central player in neuroimaging, notably used in PET scans as a marker of brain inflammation associated with traumatic brain injury, cancer, and neurodegenerative diseases (e.g., Alzheimer’s, Parkinson’s) (Fig. 1).

    Fig. 1. TSPO as a therapeutic target in neuroimaging. (a) Positron Emission Tomography (PET); (b) overexpression of TSPO in the brain of an Alzheimer’s patient.

    Fig. 2. Production and purification of TSPO.
    (a) Localization of TSPO in the outer mitochondrial membrane; (b) purification strategy based on the recognition of the fluorescent fusion protein GFP by “nanobodies.”

    A major challenge:

    To obtain a clear vision of the structure/function relationship of TSPO in order to better understand its biological role and pave the way for new imaging and therapeutic tools.

    Full description

    👉 Objective 1: Produce TSPO in its native form

    With the help of the ProtEx platform (I2BC, Saclay), we have already established proof of concept by expressing TSPO in native conditions in the yeast S. cerevisiae (Fig. 2). The internship will consist of optimizing this production and purification protocol, particularly in different environments (detergents, detergent/lipid mixtures, lipid nanodiscs)

    👉 Objective 2: Explore its structure and function

    The produced protein will be characterized using a range of biophysical and structural techniques:

    • Optical spectroscopies (absorbance, fluorescence, circular dichroism),
    • Light scattering (MALS, DLS/SLS),
    • Small-angle X-ray and neutron scattering (SAXS at SOLEIL synchrotron, SANS at ILL Grenoble),
    • Ligand-binding affinity measurements by microscale thermophoresis (MST).

    The data obtained will allow comparison between the apo form and the ligand-bound form, to better understand binding and stability mechanisms.

    References:

    1. Structure/function of mTSPO translocator in lipid :surfactant mixed micelles,
      Saade C, Pozza A, Bonnete F, Finet S, Lutz-Bueno V, Tully MD, Varela PF, Lacapere JJ, Combet S. Enhanced, Biochimie 224, 3, 2024.
    2. Effect of amphiphilic environment on the solution structure of mouse TSPO translocator protein,
      Combet S, Bonneté F, Finet S, Pozza A, Saade C, Martel A, Koutsioubas A, Lacapère JJ. Biochimie 205, 61-72, 2023.

    Location

    The internship will take place at the Léon-Brillouin Laboratory (LLB, CEA, CNRS, Univ. Paris-Saclay), in collaboration with Dr. José Luis VAZQUEZ-IBAR at LPSM/I2BC, Univ. Paris-
    Saclay, and Dr. Alexandre POZZA at LBPM/IBPC, Paris.

    Internship conditions

    • Internship duration: 4 to 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: December 2026, 19th

    Experimental skills

    Master 2 student in biophysics, biochemistry, or physical chemistry, curious and motivated by structural biology and membrane proteins. A PhD continuation may be considered at the end of the internship.

    Language: French or English.

    Links

    Internship Supervisor

    Sophie COMBET
    Tél. : +33 1 69 08 67 20
    E-mail :


    December 19 2025
    March 1 2026
    4 month
    6 month
    CEA Saclay, (91) Essonne, France

  • Domain, Specialties : PHYSICS
    Keywords: spin waves, surface acoustic waves, nonlinear effects, nanomagnetism

    Research Unit : SPEC/LNO

    Summary

    The objective of this internship will be to demonstrate that the nonlinear regime of magnetization dynamics can be excited by surface acoustic wave.

    Full description

    RF signals are everywhere in today’s connected society. On one side, surface acoustic wave (SAW) devices built on piezo-electric substrates are widely used to distinguish between frequencies. While quite energy efficient, SAW devices mostly operate in narrowband applications and perform linear, frequency-conserving operations. On the other side, magnonic devices rely on the specific properties of spin-waves (SW) in ferromagnetic materials and are highly tunable and nonlinear, but suffer from significant insertion losses. Fortunately, magneto-elastic and magneto-rotation effects can couple the dynamics of magnetization in a thin ferromagnetic film deposited on top of a piezo-electric substrate to the one of its lattice. For instance, we have recently demonstrated that it is possible to excite the linear magnetization dynamics of a ferromagnetic CoFeB nanodisk thanks to SAW electrically actuated in the underlying LiNbO3 substrate [1].

    The objective of this internship will be to demonstrate that this can also be achieved in a nonlinear regime. For this, we will magnetize the ferromagnetic disk in the plane. In this configuration, the precession of magnetization is elliptical, which allows to excite parametrically spin-wave eigenmodes of the disk using an RF magnetic field parallel to the disk’s magnetization with a frequency close to twice the eigenfrequencies [2]. The originality here will be to replace the RF excitation field usually produced by an inductive antenna by the effective tickle and rolling fields associated to the magneto-elastic and magneto-rotation terms active when a SAW is excited in the substrate. These measurements will be performed on samples fabricated in collaboration with another laboratory (C2N) and thanks to a highly sensitive magnetic resonance force microscopy technique developed at SPEC. Micromagnetic simulations using Mumax3 will also be conducted to understand the SAW excitation threshold to be overcome to excite parametric modes in the disk.

    This internship will take place in the context of the recently funded project NELSON (« Non-Linear Surface acoustic wave platform enabled by spin wave hybridizatiON ») by the French ANR.

    [1] R. Lopes Seeger et al., Phys. Rev. Lett. 134, 176704 (2025)
    [2] T. Srivastava et al., Phys. Rev. Appl. 19, 064078 (2023)

    Location

    CEA Saclay, Site de l’Orme des merisiers (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: 1 février 2026

    Experimental skills

    Language: English

    Useful methods and technics: Hyperfrequencies, magnetic force microscopy, micromagnetic simulations

    Computer languages and software: Python programming, lock-in measurements

    Links

    Supervisor

    Grégoire de Loubens
    Phone: +33 1 69 08 71 60
    Email :

    Head of the laboratory SPEC/LNO : Michel Viret


    January 30 2026
    February 2 2026
    6 month
    CEA Saclay, Site de l’Orme des merisiers (91) Essonne, France

  • Domain, Specialties : Materials chemistry
    Keywords: CO2 capture, Nanomaterials, Artificial Intelligence, Small-Angle X-ray scattering

    Research Unit : NIMBE / LIONS

    Summary

    This internship explores the discovery of new nanostructured oxides for CO2 capture using an approach combining robotic synthesis and artificial intelligence. The project aims to validate this innovative methodology while identifying materials with improved performance.

    Full description

    The automation of chemical synthesis assisted by artificial intelligence opens new prospects for accelerated discovery of functional materials. However, the validity of these approaches compared to conventional methods remains to be established, particularly for the synthesis of nanostructured oxides intended for CO2 capture and sequestration.

    The internship addresses two complementary scientific questions:

    • Methodological validation: Determine whether robotic synthesis produces materials equivalent to those obtained by conventional routes, or whether automation generates specific synthesis pathways with distinct properties
    • Parameter space exploration: Systematically explore the influence of multiple parameters (oxide types, nanostructuring agents, injection protocols) to identify materials exceeding current CO2 capture performance

    The intern will implement an experimental protocol combining:

    • Solution-based syntheses, both automated (Opentrons Flex robot) and manual for comparison
    • Structural characterization by small-angle X-ray scattering (SAXS, laboratory and synchrotron)
    • Adsorption property measurements (BET, CO2 capture/release) in collaboration with ENSTA
    • Programming for robot control and data analysis

    This high-throughput approach will enable exploration of a parameter space inaccessible by conventional methods.

    Experimental skills developed:

    • Oxide synthesis in solution (conventional and robotic methods)
    • Advanced characterization techniques (SAXS, physisorption, gas adsorption)
    • Use of automated equipment and associated programming

    Methodological skills developed:

    • High-throughput experiment design
    • Critical analysis of complex datasets
    • Rigorous scientific validation approach

    The internship also offers the opportunity to work with advanced research equipment (synchrotron) and develop expertise at the interface between materials chemistry and computational methods.

    The internship will take place within a 4-person team working on this topic, in a laboratory of approximately 30 researchers. The intern will have access to the following equipment:

    • Opentrons Flex synthesis robot
    • Laboratory X-ray scattering and synchrotron beamtime
    • Chemistry laboratory for synthesis and preparations
    • Gas characterization platform (CO2 capture/release, BET)

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: 2 février 2026

    Experimental skills

    Candidate profile: Master’s degree (M2) in materials science, solid-state chemistry, physical chemistry, or related disciplines.

    Knowledge of oxide synthesis and physicochemical characterization is desired. An interest in programming represents a significant asset to fully exploit the capabilities of the robotic approach. The project will particularly suit candidates interested in innovative methodological approaches in materials science and in issues related to the energy transition.

    Language : English

    Supervisor

    David Carrière
    Phone: +33 1 69 08 54 89
    Email :

    Head of the laboratory NIMBE / LIONS

    Antoine Thill
    Phone: +33 1 69 08 99 82


    November 16 2025
    February 2 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Domain, Specialties : Condensed matter physics
    Keywords: spin waves, surface acoustic waves, nonlinear effects, nanomagnetism

    Research Unit : SPEC / LNO

    Summary

    The objective of this internship will be to demonstrate that the nonlinear regime of magnetization dynamics can be excited by surface acoustic waves.

    Full description

    RF signals are everywhere in today’s connected society. On one side, surface acoustic wave (SAW) devices built on piezo-electric substrates are widely used to distinguish between frequencies. While quite energy efficient, SAW devices mostly operate in narrowband applications and perform linear, frequency-conserving operations. On the other side, magnonic devices rely on the specific properties of spin-waves (SW) in ferromagnetic materials and are highly tunable and nonlinear, but suffer from significant insertion losses. Fortunately, magneto-elastic and magneto-rotation effects can couple the dynamics of magnetization in a thin ferromagnetic film deposited on top of a piezo-electric substrate to the one of its lattice. For instance, we have recently demonstrated that it is possible to excite the linear magnetization dynamics of a ferromagnetic CoFeB nanodisk thanks to SAW electrically actuated in the underlying LiNbO3 substrate [1].

    The objective of this internship will be to demonstrate that this can also be achieved in a nonlinear regime. For this, we will magnetize the ferromagnetic disk in the plane. In this configuration, the precession of magnetization is elliptical, which allows to excite parametrically spin-wave eigenmodes of the disk using an RF magnetic field parallel to the disk’s magnetization with a frequency close to twice the eigenfrequencies [2]. The originality here will be to replace the RF excitation field usually produced by an inductive antenna by the effective tickle and rolling fields associated to the magneto-elastic and magneto-rotation terms active when a SAW is excited in the substrate. These measurements will be performed on samples fabricated in collaboration with another laboratory (C2N) and thanks to a highly sensitive magnetic resonance force microscopy technique developed at SPEC. Micromagnetic simulations using Mumax3 will also be conducted to understand the SAW excitation threshold to be overcome to excite parametric modes in the disk.

    This internship will take place in the context of the recently funded project NELSON (« Non-Linear Surface acoustic wave platform enabled by spin wave hybridizatiON ») by the French ANR.

    [1] R. Lopes Seeger et al., Phys. Rev. Lett. 134, 176704 (2025)
    [2] T. Srivastava et al., Phys. Rev. Appl. 19, 064078 (2023)

    Location

    CEA Saclay, Site de l’Orme des merisiers (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: 2 février 2026

    Experimental skills

    Language : English

    Useful methods and technics: hyperfrequencies, magnetic force microscopy, micromagnetic simulations

    Computer languages and software: Python

    Links

    Supervisor

    Grégoire de Loubens
    Phone: 01 69 08 71 60
    Email :


    January 30 2026
    February 2 2026
    6 month
    CEA Saclay, Site de l’Orme des merisiers (91) Essonne, France

  • Domain, Specialties : Molecular physics
    Keywords: polymerization, optics, nanophotonics, plasmonics, local probes, AFM, STM

    Research Unit : SPEC / LEPO

    Summary

    The manufacture of high-quality 2D materials is an important challenge in nanotechnology. Molecular self-assembly makes it possible to create promising supramolecular structures, but these are not stable. The internship aims to study the photo-crosslinking of such assemblies to make them stable, by playing with the degrees of freedom of light.

    Full description

    The interaction between a material and its environment occurs primarily at its surface. Nano-structuring this surface makes interactions more selective and allows new optoelectronic properties to be obtained. High-quality two-dimensional (2D) materials are therefore an important scientific goal. One promising approach is the self-assembly of molecules on a crystalline substrate. This method is flexible and allows to obtain a wide variety of organized 2D supramolecular networks with promising properties for optoelectronics and sensing. However, these assemblies are based on non-covalent bonds, making them fragile and thermally unstable.

    To strengthen these networks, one solution is to bond the molecules together on the surface, thus creating a covalent 2D network. This covalent network formation can be achieved by heating under ultra-high vacuum. However, this method can cause defects in the surface. An interesting alternative is to use light to trigger the cross-linking of the network, which allows for new control parameters: wavelength and polarization of light. We propose to create such molecular assemblies under ambient conditions and characterize them using optics and scanning probe microscopies.

    This internship will aim to:

    • Characterize molecular assemblies synthesized by project partners, in air or at the liquid–solid interface, using scanning probe microscopies (scanning tunneling microscopy (STM), atomic force microscopy (AFM) ).
    • Monitor their evolution under light excitation to demonstrate localized photochemical cross-linking under ambient conditions.

    Location

    CEA Saclay, Site de l’Orme des merisiers (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: 3 mars 2025

    Experimental skills

    Language : English

    Useful methods and technics:

    • Scanning tunneling microscopy (STM)
    • Atomic force microscopy (AFM)
    • Optical microscopy
    • Absorption spectroscopy
    • Raman spectroscopy

    Computer languages and software: Python

    Links

    Supervisor

    Simon Vassant
    Phone: +33 1 69 08 95 97
    Email :

    Head of the laboratory SPEC / LEPO

    Ludovic Douillard
    Phone: +33 1 69 08 36 26


    January 30 2026
    February 2 2026
    6 month
    France

  • Domain, Specialties : Theoretical physics, quantum mechanics
    Keywords: quantum vacuum ; electromagnetic fluctuations ; electron-positron pairs; quantum friction

    Research Unit : SPEC / SPHYNX

    Summary

    Electromagnetic fluctuations of quantum vacuum and blackbody radiation induce friction forces at the atomic level. This internship is devoted to considering quantum fluctuations of virtual particle-antiparticle pairs as well. The physical model developed at SPHYNX should evolve to include those fluctuations in the calculation of dissipative forces.

    Full description

    Quantum fluctuations induce conservative macroscopic forces such as the Casimir effect. They could also cause dissipative forces, termed vacuum (or quantum) friction. Up to now, this friction effect has been calculated with consideration of the electromagnetic fluctuations only, i.e. without taking into account the Dirac Sea. This project is devoted to the extension of our research in this direction: electrons, as main contributors of the matter-field interaction, also interact with electron-positron virtual pairs in the quantum vacuum. How much of quantum friction, at zero or finite temperature, could be due to this type of interaction? A first step will be adapting the present semi-classical framework to include vacuum polarization and pair creation. In doing so, one will encounter finite frequency cut-offs, traditionally linked to virtual pair creation; thus one will determine a friction component linked with the finite cut-off of Fourier integrals. On this research path, one shall pay attention to maintaining the mathematical coherence of the whole framework. A longer-term goal remains a complete and consistent quantum relativistic treatment of quantum friction at the atomic level.

    Location

    CEA Saclay, Site de l’Orme des merisiers (91) Essonne, France

    Internship conditions

    • Internship duration: 4 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: 1 avril 2026

    Experimental skills

    Language : English

    Useful methods and technics:

    • differential equations
    • formal calculus
    • QED

    Computer languages and software: Mathematica ; python ; LaTeX

    Links

    Site web du laboratoire : https://iramis.cea.fr/spec/

    Personal web page of supervisor: Herve Bercegol

    Supervisor

    Herve Bercegol (SPEC/SPHYNX)
    Phone: 06 17 91 24 79
    Email :


    January 30 2026
    February 2 2026
    4 month
    CEA Saclay, Site de l’Orme des merisiers (91) Essonne, France

  • Domain, Specialties : Organic chemistry
    Keywords: catalysis, synthetic methodology

    Research Unit : NIMBE / LCMCE

    Summary

    Faced with the depletion of fossil resources, this internship explores an alternative: using bio-based alkyl esters as electrophiles in cross-coupling reactions (Heck type), replacing polluting organic halides. The objective is to develop catalytic methods using abundant metals such as Fe/Co in photo- or thermocatalysis via tandem catalysis to activate the C–O bonds of esters. The project will build on the laboratory’s work in ester activation and preliminary results. This is an opportunity to contribute to circular chemistry, applicable to the pharmaceutical, agrochemical, and materials industries.

    Full description

    Context and Subject of the internship

    The easy access to energy and carbon-based raw materials offered by the fossil feedstock allowed for the rapid growth of our society. Nevertheless, the expected depletion of fossil resources and climate change require a switch to a more sustainable model. Bio-based feedstock is a promising carbon source to substitute petrochemicals, but requires a drastic shift from the current model. While the current paradigm relies on the production of energy and high-value molecules through oxidation steps, a model based on Carbon Circular Economy, i.e., the transformation of CO2 and biomass feedstock that are already highly oxidized materials, demands the development of new methodologies for reduction, deoxygenation, and the direct use of oxygenated bonds to access functionalized and useful organic molecules.

    In organic chemistry, cross-coupling reactions represent one of the major tools to create C–C bonds. However, they are still based mainly on the use of organic halides as electrophiles. In this project, the Master student will demonstrate that readily available and abundant alkyl esters can serve as electrophilic coupling partners in cross-coupling reactions with alkenes. Esters can indeed be directly biosourced or easily synthesized from alkyl carboxylic acids and alcohols, thereby diminishing the environmental impact of the carbon-carbon bond formation.

    Objectives and Methodology

    The main objective of the project will be the development of catalytic Heck-type cross-coupling reactions, under both thermal and photo-activation, catalyzed by non-noble metals (Fe, Co…). To activate alkyl esters, we envisage the use of tandem catalysis, where two catalysts will work in synergy to perform the reaction. The master project will draw on ongoing research in our laboratory on the reactivity of esters,1 C–O bond activations,2 and preliminary unpublished results.

    Funding is available to continue this project with a doctoral thesis starting in fall 2026.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: 2 février 2026

    Experimental skills

    Language : English

    Useful methods and technics:
    The master student will develop his/her skills in catalysis, organic and organometallic synthesis, working under inert atmosphere (Schlenk lines, gloveboxes), as well as in the analysis of chemical compounds (NMR, GC-MS, IR, X-Ray). The student will also have access to modern optimization methods for catalytic systems, such as highthrouput experimentation (HTE) and DFT computations, and be trained in these techniques if he/she so wishes.

    Computer languages and software: N/A

    Links

    Site web du laboratoire : https://iramis.cea.fr/en/nimbe/lcmce/

    Personal web page of supervisor:

    Supervisor

    Lucile Anthore-Dalion
    Phone: +33 1 69 08 91 59
    Email :

    Head of the laboratory NIMBE / LCMCE


    Phone:


    January 30 2026
    February 2 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Domain, Specialties : Physical chemistry
    Keywords: energy transition, low-carbon cement and concrete, SAXS, microfluidics, automation

    Research Unit : NIMBE / LIONS

    Summary

    This project aims to adapt a cement microreactor, recently developed for in situ analysis of carbonation curing by XRD, so that it is compatible with the DIADEM FastNano automated SAXS platform. The goal is to better understand the simultaneous evolution of cement structure and porosity during the early stages of curing, a key factor for CO₂ capture and mechanical properties. The intern will contribute to the technical development of the microreactor as well as to the implementation of scripts for automated SAXS data collection and processing.

    Full description

    The production of ordinary Portland cement (OPC) clinker accounts for up to 8% of global CO2 emissions. Approximately 40% of this CO2 comes from the energy expended by heating the raw limestone and clays needed to produce the clinker, while the remaining 60% is released from the carbonates trapped within the limestone. Unfortunately, only a small fraction of this released CO2 is re-captured when cements are hardened through standard hydration processes. To reduce net CO2 emissions, a growing number of researchers and start-up companies (e.g., CarbonCure, Fortera) are working to cure cements through a combination of hydration and carbonation to re-capture released CO2. However, the carbonation of cements is a poorly understood phenomenon that can proceed through complex multi-step pathways.
    Due to its density, hardness, and opacity, cement setting processes are extraordinarily difficult to study. To overcome this challenge, our lab recently developed a cement “microreactor” that enables real-time analysis of cement curing (Figure) and used it to study the evolving structure of cements using X-ray diffraction (XRD). The goal of this internship is to adapt the microreactor for use on the new DIADEM FastNano automated small-angle X-ray scattering (SAXS) platform. In addition to obtaining structural information by XRD, SAXS will enable us to uncover the evolving porosity of cements during early curing stages, which is crucial to CO2 transport and mechanical strength. The intern will help us to develop microreactor hardware for performing in situ SAXS analysis and accompanying scripts for the automated collection and treatment of SAXS data.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: 2 février 2026

    Experimental skills

    Language : English

    Useful methods and technics:
    SAXS/WAXS, XRD, 3D printing, computer-aided design

    Computer languages and software:
    Python, pySAXS

    Links

    Site web du laboratoire : NIMBE/LIONS

    Web page of supervisor : Mark Levenstein

    Supervisor

    Mark Levenstein
    Phone: 01 69 08 57 34
    Email :

    Head of the laboratory NIMBE / LIONS

    Antoine Thill


    January 30 2026
    February 2 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Domain, Specialties : Liquid physics
    Keywords: physics of materials, optics,

    Research Unit : LLB/NFMQ

    Summary

    It is generally accepted that the flow of a fluid in a channel does not result in any temperature variation (without an external heat source or without reaching extreme velocities). The density of the liquid is not expected to change under flow, and therefore neither is its temperature.

    But the classical hydrodynamic law is no longer valid at the mesoscopic scale (< 1 mm). Our team has shown that liquids possess shear elasticity at small scales, a property known to be specific to solids. We have experimentally shown that when the liquid elasticity is stressed, the flow mechanism can lead to heating or cooling.

    Full description

    Elasticity is one of the oldest physical properties of condensed matter. It is expressed by a constant G of proportionality between the applied stress (σ) and the strain (γ): σ = G.γ (Hooke’s law). The absence of resistance to shear deformation (G’ = 0) indicates liquid-like behavior (Maxwell model). Long considered specific to solids, elasticity has recently been identified in liquids at the submillimeter scale [1].

    The identification of shear elasticity (non-zero G’) at the small scale holds the promise of discovering new solid properties of liquids. Thus, while no temperature change is conventionally expected under flow, we show that this is no longer true at the small scale and identify the emergence, without an external thermal source, of a positive or negative variation in temperature depending on the applied conditions [2,3]. We will explore the thermal response of liquids and exploit this ability to convert mechanical energy into temperature variations within the framework of microhydrodynamics.

    Finally, we will strengthen our collaborations with theoreticians, notably with A. Zaccone of the University of Milan.

    This topic relates to properties related to wetting, thermal effects, and small-scale liquid transport.

    Références :

    1. “Explaining the low-frequency shear elasticity of confined liquids, A. Zaccone, K. Trachenko, PNAS, 117 (2020) 19653–19655. Doi:10.1073/pnas.2010787117.
    2. E. Kume, P. Baroni, L. Noirez, “Strain-induced violation of temperature uniformity in mesoscale liquids” Sci. Rep. 10 13340 (2020). Doi : 10.1038/s41598-020-69404-1.
    3. E. Kume, A. Zaccone, L. Noirez, « Unexpected Thermo-Elastic effects in Liquid Glycerol by Mechanical Deformation » Physics of Fluids, 33, 072007 (2021) Doi: 10.1063/5.0051587.

    Location

    CEA Saclay Center, France

    Internship conditions

    • Internship duration: 3 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: 5 janvier 2026

    Experimental skills

    Language : English

    Useful methods and technics:
    microfluidics, infra-red, image treatment

    Computer languages and software:
    Home softwares, FIJI

    Links

    Supervisor

    Laurence NOIREZ (LLB/NFMQ)
    Phone: 0169086300
    Email :


    January 30 2026
    February 2 2026
    3 month
    CEA Saclay, (91) Essonne, France

  • Domain, Specialties : CHEMISTRY
    Keywords: Synthesis, batteries

    Research Unit: NIMBE / LEDNA

    Summary

    The integration of a reference electrode into a battery allows the electrochemical potential of a given electrode to be measured without affecting the battery’s performance. This potential measurement provides insight into the battery’s aging mechanisms, thereby enabling its performance to be optimized. The aim of this Master’s 2 research project is to synthesize electrode materials that can be used in Na-ion batteries.

    Full description

    Due to the growing demand for mobile energy storage, particularly in the automotive sector, research is focusing both on new battery technologies offering new prospects in terms of storage capacity and safety, and on diagnostic measures to detect battery aging mechanisms. In this context, it is particularly interesting to develop reference electrode materials for Na-ion batteries.

    The LEDNA team at NIMBE is devoted to s synthese different types of nanomaterials to address societal challenges in the energy, environment, and health sectors. As part of its research activities, the laboratory is developing several synthesis methods for obtaining customized nanoparticles (control of the chemical composition, size, and morphology of the nanoparticles). As part of this project, a state-of-the-art analysis will be carried out to determine the relevant materials for the application. These will be synthesized using various processes such as microwave-assisted solvothermal synthesis in air or under an inert atmosphere.
    The synthesized materials will be finely characterized using conventional techniques such as powder X-ray diffraction (crystallographic structure) and SEM analysis (particle size and morphology). Cyclic voltammetry measurements will complete this panel to study the electrochemical properties of these materials. The materials with the best properties will be used by the project partners as the active material for the production of reference electrodes and tested electrochemically.

    This project is being carried out in collaboration with several partners with complementary expertise, particularly in electrochemical cell instrumentation and post-mortem battery characterization (CEA/LITEN in Grenoble). Meetings between the various partners will take place during the internship.

    References:
    [1] L. Baggetto, et al., J. Phys. Chem. C, 118 (2014), pp. 7856-7864
    [2] L. Baggetto et al., Electrochem. Commun. 2013, 34, 41– 44
    [3] Y. Zhu, et al., Nanoscale, 5 (2013), pp. 780-787
    [4] Z. Jian, et al. Electrochem. Commun., 14 (2012) 86-89.
    [5] X. Zhang, et al. Nanoscale, 2019, 11, 2556.
    [6] T. Akçay, et al., ACS Applied Energy Materials 2021 4 (11), 12688-12695

    Location

    CEA-Saclay, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: No
    • Application deadline: 5 janvier 2026

    Experimental skills

    Language : English

    Useful methods and technics:
    Inorganic synthesis (by microwave, sol-gel, combustion), XRD, SEM, IR, BET, electrochemistry

    Supervisor

    Suzy SURBLE
    Phone: 01 69 08 69 16
    Email :

    Head of the laboratory NIMBE / LEDNA

    Suzy SURBLE
    Phone: 01 69 08 69 16


    January 9 2026
    February 2 2026
    6 month
    France

  • Internship offer description

    • Field / Topic: Condensed matter physics/ photoelectrochemistry
    • Research Unit: SPEC/LNO
    • Internship place: CEA Saclay
    • Internship duration: 6 months
    • Level of study: Bachelor + 5 years
    • Training: Master 2 / Engineer
    • Continuation in PhD thesis: YES
    • Application deadline: 30/01/2026

    Internship subject

    Description:    

    Mechanisms underlying the oxygen evolution reaction (OER) at the photoanode/electrolyte interface remain poorly understood. This lack of clarity hinders the critical knowledge leap required for efficient water splitting and the production of clean hydrogen. Advanced operando spectromicroscopy approaches — such as Scanning Transmission X-ray Microscopy (STXM) and ptychography — provide a key opportunity to elucidate the role of each relevant parameter (morphology, structure, chemical coordination, etc.) at the nanoscale and during the photoelectrochemical reaction.

    This internship is part of a project aimed at exploiting operando methods recently implemented at the STXM instrument (HERMES beamline, SOLEIL synchrotron), within the framework of the ANR OERKOP grant. Homemade micro-photoelectrochemical cells, compatible with the commercial Protochips cell holder, will be used. These cells enable photoanode materials to be grown directly on glassy carbon working electrodes using well-established chemical deposition methods developed in our group¹⁻³. Existing operando spectromicroscopy methods will be complemented by the development of a time-resolved scheme in the millisecond/second range to track transitory reversible effects during the OER.

    Missions:

    The intern will work at the HERMES beamline (SOLEIL synchrotron) in close collaboration with a post-doctoral researcher and a PhD student. He/she will actively participate in running operando STXM electrochemical experiments. He/she will develop several skills in:

    • Sample synthesis using established methods (aqueous chemical growth, hydrothermal mineralization, dip coating).
    • Material characterization (X-ray diffraction, Raman spectroscopy, UV-vis absorption, SEM).
    • Photoelectrochemical characterization (linear sweep voltammetry, cyclic voltammetry).
    • Spectromicroscopy using the STXM instrument at the HERMES beamline.

    The intern will have access to state-of-the-art instruments and cutting-edge methods (operando, ptychography) developed recently.

    This internship may lead to a PhD thesis, subject to funding from EDPIF doctoral school at Paris-Saclay University.

    Keywords : Solar water splitting, hematite photoanode, X-rays spectromicroscopy, operando

    Links

    Candidate profile

    • Scientific skills: material science, condensed matter, photoelectrochemistry
    • Software / calculations : office, python for data treatement and spectra fit
    • Languages : English, French

    Supervisors


    February 1 2026
    March 1 2026
    6 month
    CEA Saclay, Site de l’Orme des merisiers (91) Essonne, France

  • Domain, Specialties : Chemisry
    Keywords: Polymer chemistry, plastic waste valorization

    Research Unit : NIMBE / LCMCE

    Summary

    R&D Internship on an innovative chemical route for upcycling nylon waste

    Full description

    Polyamides, in particular nylon 6 and nylon 6/6, are widely used as fibers or engineering plastics in various application sectors (textile, automotive, construction, etc.). Despite the development of reuse methods to extend the lifespan of products, the intensive use of these polyamides inevitably leads to an accumulation of waste. At present, most of this waste is either landfilled or incinerated. Both landfill and incineration are not long-term sustainable solutions, leading to a waste of materials, an economic loss and numerous pollutants. The development of more environmentally-friendly mechanical and/or chemical recycling processes is absolutely essential.
    Unlike the few current recycling processes for these plastics, the innovative UPNYL process developed in the laboratory (LCMCE at CEA) chemically transforms polyamides into new high value-added materials. This method opens access to innovative compounds while tackling the polyamide waste management issue.

    This internship project aims to optimize the UPNYL chemical upcycling process to evaluate the performance of new polymers derived from waste nylons and scale up this technology. The results of this internship will be crucial for the successful transfer of this technology, providing a clear indication of the future start-up’s positioning.

    During the internship, you will develop your skills in catalysis, organic and organometallic synthesis, and polymer chemistry. You will work in an inert atmosphere using vacuum lines and glove boxes, as well as analyzing chemical compounds using NMR, GC-MS, IR, GPC, HPLC and elemental analysis.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: No
    • Application deadline: 2 février 2026

    Experimental skills

    Language : English

    Useful methods and technics:
    Catalysis, organic and organometallic synthesis
    Working in an inert atmosphere using vacuum lines and glove boxes and analysis of chemical compounds using NMR, GC-MS, IR, GPC, HPLC and elemental analysis.

    Supervisor

    Marie Kobylarski
    Phone: +33 1 69 08 87 89
    Email :


    January 30 2026
    February 2 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Topic : CHIMIE
    Keywords: Organic chemistry

    Research Unit: NIMBE / LICSEN

    Porphyrin-based nanostructures

    Abstract

    Porphyrins are aromatic tetrapyrrole macrocycles that exhibit a wide variety of optical, optoelectronic, and electrochemical properties. The aim of this project is to synthesize new porphyrin-based materials to take advantage of these properties.

    Detailed subject

    Le but de ce projet est de synthétiser de nouvelles molécules à base de porphyrines pour la fabrication de nanostructures mono- et bidimensionnelles. Les porphyrines sont des macrocycles tetrapyrroliques aromatiques ; les dérivés de porphyrines sont des briques essentielles du vivant, notamment pour le transport d’oxygène, pour les réactions d’oxydation et également pour la photosynthèse. Au-delà de cette importance dans le domaine du vivant, les propriétés optiques et électroniques des porphyrines en font un des matériaux les plus étudiés pour la conversion d’énergie, la catalyse, l’optique/optoélectronique et la médecine.

    D’autre part, à cause de leur structure et de la grande versatilité de leur synthèse, les porphyrines meso-substituées ont permis la formation d’un large éventail de nanostructures covalentes ou supramoléculaires. [1-5]

    Dans ce contexte, au cours de ce stage nous proposons de synthétiser des dérivés de porphyrines contenant des groupements PAHs (hydrocarbures aromatiques polycycliques) pouvant conduire à des porphyrines pi-étendues et/ou des nanostructures mono- et bidimensionnelles.[6-8] Avec ces assemblages, nous visons à exploiter les propriétés optiques et optoélectroniques des porphyrines.

    Ce projet rassemble plusieurs partenaires possédant des expertises complémentaires en chimie (CEA Paris-Saclay), en optique (LuMIn, ENS et Université Paris-Saclay) et en microscopie à effet tunnel (ISMO, Université Paris-Saclay et IM2NP/CINaM Aix-Marseille Université). Pour ce projet le/la candidat(e) devra posséder une solide formation en chimie organique. Le projet sera réalisé en collaboration avec des physiciens ; le/la candidat(e) doit également avoir un goût prononcé pour le travail multidisciplinaire.

    Références :

    • [1] S. Mohnani and D. Bonifazi, Coord.Chem.Rev., 2010, 254, 2342-2362.
    • [2] N. Aratani and A. Osuka, Bull.Chem.Soc.Jpn, 2015, 88, 1-27.
    • [3] R. Haver and H. L. Anderson, Helv.Chim.Acta, 2019, 102, e1800211.
    • [4] L. Grill, M. Dyer, L. Lafferentz, M. Persson, M. V. Peters and S. Hecht, Nat.Nanotechnol., 2007, 2, 687-691.
    • [5] J. Otsuki, Coord.Chem.Rev., 2010, 254, 2311-2341.
    • [6] N. Kalashnyk, M. Daher Mansour, J. Pijeat, R. Plamont, X. Bouju, T. S. Balaban, S. Campidelli, L. Masson and S. Clair, J. Phys. Chem. C, 2020, 124, 22137-22142.
    • [7] J. Pijeat, L. Chaussy, R. Simoës, J. Isopi, J.-S. Lauret, F. Paolucci, M. Marcaccio and S. Campidelli, ChemOpen, 2021, 10, 997-1003.
    • [8] M. Baljozovic, J. Pijeat, S. Campidelli and K.-H. Ernst, J. Am. Chem. Soc., 2024, 146, 50, 34600–34608.

    Internship location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Durée du stage : 5-6 mois
    • Niveau d’étude requis : Bac+5
    • Formation : Master 2
    • Poursuite possible en thèse : Oui
    • Date limite de candidature : 5 décembre 2025

    Required skills

    Méthodes, techniques :
    Synthèse organique, RMN, spectrométrie de masse.

    Langue : Anglais

    Links

    Internship supervisor

    Stéphane CAMPIDELLI
    Tél. : +33 1 69 08 51 34
    Email :

    Head of the laboratory NIMBE / LICSEN

    Frédéric OSWALD


    December 31 2025
    February 2 2026
    5 month
    6 month
    CEA Saclay, (91) Essonne, France

  • Topic, Specialties: PHYSICS
    Key words: magnetic sensor, leakage fields

    Hosting unit: SPEC/LNO

    Magnetic mapping using magnetoresistive magnetic sensors

    Abstract

    The aim of the internship is to optimize the magnetoresistive sensors, the 3D probe and the scanner of the setup developed in the laboratory and allowing the quantitative and vectorial measurement of leakage fields emitted by various samples ranging from paleomagnetic rocks to RF absorbing materials.

    Detailed subject

    This internship is part of the ANR MOOSAIC project, which aims to address the problem of non-destructive evaluation of the local magnetic properties (DC and AC) of microstructured, inhomogeneous materials (e.g. paleomagnetic rocks and RF-absorbing petals). It tackles this problem by developing a 3D scanner, consisting of 4 giant magnetoresistance (GMR) sensors, capable of measuring stray magnetic fields emitted by material surfaces in both DC and AC modes, rapidly, vectorially and quantitatively over large areas (several mm² ) with a spatial resolution of ten microns. The aim is to optimize the setup for determining DC and AC magnetic properties, to design a model for reconstructing the field and magnetic properties of the sample, and to apply it to two case studies in geology and physics.

    The aim of the internship will be to optimize the GMR sensors and 3D probes used to carry out the magnetic mapping, in terms of leakage field reduction, accuracy of sensor positioning on the probe, stability under temperature and field disturbances, AC measurements, scan height control and determination of the 3D probe sensitivity matrix. GMR deposition and cleanroom fabrication, characterization and optimization by magnetometry, magneto-transport and noise measurements, and 3D probe assembly will be carried out during the internship. Part of the optimization of the setup and its instrumentation may also be carried out during the internship.

    Internship location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Duration: 6 months
    • Level of education required: Bac + 5
    • Training : Engineer/Master 2
    • Possibility of undertaking a doctoral thesis after the internship: Yes
    • Application deadline: February 1, 2026

    Skills required

    • Methods, techniques : Magnetic mapping, micro-fabrication, instrumentation
    • Language : English

    Useful links

    Internship coordinator

    Aurélie Solignac
    Tel : 01 69 08 95 40
    Email :


    January 30 2026
    February 3 2026
    4 month
    10 month
    CEA Saclay, Site de l’Orme des merisiers (91) Essonne, France