CEA
CNRS
Univ. Paris-Saclay

Service de Physique de l'Etat Condensé

Faits marquants scientifiques 2017

23 octobre 2017
En utilisant un atome artificiel dans le diamant comme détecteur de champ magnétique ultrasensible, des physiciens ont imagé pour la première fois le champ de fuite rayonné par un composé de la vaste famille des antiferromagnétiques. Cette observation leur a permis d’étudier l’effet d’un champ électrique sur la modulation sinusoïdale de l’ordre antiferromagnétique dans un matériau multiferroïque.

 

23 janvier 2017
An international team published in Nature, the discovery and interpretation of a surprising form of biological collective motion:  They observed that millions of motile cells in dense bacterial suspensions can self-organize into highly robust collective oscillatory motion, while individuals move in an erratic manner.  This "weak synchronization" phenomenon presents a novel mechanism of oscillatory behavior in multicellular systems and constitutes a new type of ordered active matter. Experimental evidence, together with a mathematical model developed by theorists Hugues Chaté from CEA-Saclay in France and Xia-qing Shi from Soochow University in mainland China, demonstrate that the self-organized collective oscillatory motion may result from spontaneous symmetry breaking of bacterial motion mediated by purely local interactions between individual cells.

 

 

07 novembre 2017

Les photons intriqués jouent un rôle fondamental pour la compréhension et la vérification expérimentale des aspects les plus spectaculaires de la physique quantique, notamment dans les expériences de violation des inégalités de Bell. En outre, ils constituent des ressources potentielles pour des protocoles de télécommunication et de transmission de l’informatique quantique. Nous avons récemment montré qu’une jonction Josephson polarisée en tension offre une source particulièrement simple et brillante de paires de photons intriqués.

08 mars 2017
Groupe Nanoélectronique

 

Lorsqu’un conducteur quantique est exposé à du rayonnement électromagnétique, ses propriétés de transport sont modifiées par l'interaction entre la lumière et les électrons se propageant dans le conducteur quantique. Une des signatures de cette interaction est l’augmentation du bruit électronique généré par le conducteur alors même qu’aucun courant continu ne passe dans le conducteur. Ce phénomène, appelé bruit photo-assisté, a été prédit et largement exploré dans le domaine micro-ondes, où divers types de conducteurs quantiques ont été exposés à des signaux à des fréquences allant jusqu’à plusieurs dizaines de gigahertz. Le groupe Nanoélectronique du SPEC a mis en œuvre une expérience inédite visant à observer le bruit photo-assisté dans un conducteur en graphène exposé à des radiations dans le domaine terahertz, plusieurs ordres de grandeurs au-delà des observations précédentes. Leurs travaux sont publiés dans Physical Review Letters.

 

07 novembre 2017

Il est montré que la manipulation d’un atome et d’une molécule à l’aide d’un microscope à effet tunnel permet la construction d’un nano-objet sur une surface, dont les propriétés électroniques sont modulables en fonction de la position relative de ses deux composants.

Cette étude illustre les multiples potentialités d'une chimie de piègeage (Trapping chemistry), permettant de moduler les propriétés mécaniques et réactives des molécules, par une maitrise fine des transferts de charge au sein du nano-objet constitué.

09 février 2017
Des physiciens viennent de montrer qu’en connectant un fil moléculaire conducteur à une électrode de graphène, il est possible de réduire de manière importante l’atténuation du courant électrique à la jonction entre la molécule et l’électrode.

 

En utilisant des molécules comme composants élémentaires, le domaine de l’électronique moléculaire met directement à profit les propriétés quantiques des molécules. La synthèse chimique permet alors d’ajuster ces propriétés et d’élaborer des architectures variées. Toutefois, à cette échelle et dans ces nouveaux composants, la circulation du courant électrique est bien moins aisée que dans les conducteurs métalliques ou semi-conducteurs : une jonction moléculaire atténue fortement la propagation du courant. Et surtout, cette atténuation augmente exponentiellement [1] avec la longueur de la molécule. Une équipe internationale de physiciens du Service de physique de l’état condensé (SPEC, CNRS/CEA), de l’Université de Liverpool au Royaume-Uni et de l’Université Xi’an-Jiaotong-Liverpool en Chine, viennent de trouver une parade à ce problème en remplaçant l’électrode métallique traditionnelle par une électrode en graphène. Ils ont ainsi observé une nette augmentation du courant mesuré en fonction de la longueur de la molécule. Cette augmentation représente un facteur 2 par rapport à ce qui était connu dans les jonctions moléculaires classiques métal/molécule/métal. Ces résultats supportés par un modèle théorique ont fait l’objet d’une publication dans Nano Letters.

02 septembre 2017

Dans une expérience de laboratoire, les chercheurs de l’Iramis/SPEC ont observé qu'un écoulement très turbulent pouvait présenter une dynamique chaotique entre plusieurs régimes d'écoulements métastables. Une collaboration SPEC-LSCE propose aujourd'hui un jeu de trois équations déterministes "simples", rendues stochastiques par l'ajout d'un terme aléatoire, qui permet de décrire un tel écoulement au comportement intermittent.

Les simulations, basées sur ce modèle permettent effectivement de décrire le comportement chaotique observé entre plusieurs états métastables, effet que l’on pourrait qualifier de "super-effet papillon". Un bon point de départ pour mieux décrire des phénomènes atmosphériques complexes, comme par exemple la circulation atmosphérique globale !

 

07 juillet 2017
​En s'appuyant sur une expérience de laboratoire, des chercheurs de l'Iramis et du LSCE proposent un jeu de trois équations "simples" pour représenter un écoulement très turbulent. Ces équations conduisent à un comportement extrêmement chaotique qu'on pourrait qualifier de "super-effet papillon". Un bon point de départ pour décrire des phénomènes atmosphériques complexes comme les nuages ou les précipitations !

 

 

Retour en haut