CEA
CNRS
Univ. Paris-Saclay

Service de Physique de l'Etat Condensé

Faits marquants scientifiques 2021

02 juin 2021
An international consortium of physicists from the University of Regensburg, SPEC, the University of Marburg, and the Russian Academy of Sciences in Novosibirsk observed a new kind of light emission when electrons in topological insulators abruptly reverse their direction of motion. Under THz driving surface electrons -- ``inertia-free'' massless Dirac particles -- are accelerated through the topologically non-trivial band structure, whose imprints on their dynamics leads to the emission of unconventional higher-order harmonic (HH) radiation. The study provides a platform to explore topology and relativistic quantum physics in strong-field control, and could lead to non-dissipative topological electronics at infrared frequencies.

 

09 septembre 2021

Under a high magnetic field and at low temperatures, electrons in graphene can end up with all their spins perfectly aligned. The elementary excitations of such an ideal magnet, called spin waves or magnons, are intrinsically magnetic objects that nonetheless have an electrostatic nature, as they carry an electric dipole. Researchers from the Nanoelectronics group of SPEC, in collaboration with theorists from IPhT and experimentalists from NTT-BRL and NIMS (Japan), have recently observed for the first time the electric dipole of spin waves in quantum Hall ferromagnet by using an electronic Mach-Zehnder interferometer, realized in a high quality graphene sample, as an ultra-sensitive quantum sensor.

When a perpendicular magnetic field is applied on a two-dimensional electron system like e.g. graphene, electrons become distributed in energy on widely-spaced, highly degenerate Landau levels. The latter are the hallmark of the so-called quantum Hall effect regime. At large enough magnetic field, the various symmetries underlying the Landau levels (spin, valley, etc) can break, giving rise to well-separated sub-Landau levels that can be fully polarized in a given symmetry. By tuning the electron density and the magnetic field such that only one spin-polarized sub-Landau level is filled, one can effectively create a perfect ferromagnet, a system where absolutely all electron spins point in the same direction. In monolayer graphene, such a perfect “quantum Hall ferromagnet” is obtained at filling factor ν=1, when spin and valley symmetries are broken by electronic interactions and only a single spin- and valley-polarized electron channel can propagate along the edges of the sample (while the bulk remains insulating). Recent experiments have shown that it is possible to excite the elementary bulk excitations of this peculiar ferromagnet, which are charge-neutral spin waves, or magnons, simply by applying to the sample a drain-source potential larger than the Zeeman energy. Many fundamental properties of these magnons remain to be observed and investigated. In particular, even though they are magnetic excitations, magnons of a quantum Hall ferromagnet have an intrinsic excitonic nature, as they carry an intrinsic electric dipole oriented perpendicularly to their propagation direction.

To observe this electric dipole, the researchers from SPEC and their collaborators have devised an experiment, described in Figure 1a, in which a stream of magnons is emitted towards an electronic Mach-Zehnder interferometer realized in a graphene p-n junction, acting as an ultra-sensitive electric dipole detector. The detection mechanism is two-fold: on the one hand, the stream of magnons impinge on the interferometer with a given average angle, which depends on the position of the magnon emission point relative to the interferometer. Depending on the value of this angle, the positive part of the electric dipole might be closer to the interferometer than the negative part, or vice-versa (see insets in Figure 1a). This plays the role of an effective local electrostatic gate, shifting the position of the interferometer’s two arms (central blue and yellow arrows in Figure 1a) relative to one another, thus leading to a measurable phase shift of the interferometer. On the other hand, the magnons are emitted randomly in time, and impinge accordingly on the interferometer. This leads to rapid fluctuations in the electric field felt by the interferometer, which cause the amplitude of the interference pattern to diminish.

06 avril 2021
Des chercheurs des équipes Nanoélectronique et Modélisation et Théorie du SPEC, en collaboration avec des expérimentateurs du NTT-BRL et du NIMS (Japon) et des théoriciens du KAIST (Corée), ont mis au point de nouveaux séparateurs accordables d'ondes électroniques au sein du graphène, dont le principe utilise ses symétries cristallines. En utilisant ces séparateurs de faisceau, les chercheurs montrent qu'il est possible de réaliser l'analogue électronique d'un interféromètre optique de type Mach-Zehnder, dont la transmission des séparateurs peut être ajustée. L'analyse des interférences quantiques électroniques observées montre que le graphène pourrait être utilisé pour réaliser des circuits quantiques complexes avec l'avantage d'un très haut degré de robustesse à la décohérence.

 

01 février 2021

En 1983, iI a été prédit théoriquement par A. Schmid que toute jonction Josephson dans son état fondamental, shuntée par une résistance R de forte valeur ne devrait pas être supraconductrice mais isolante.

Même si plusieurs expériences avaient prétendu confirmer cette théorie, des physiciens du SPEC et d'universités allemandes viennent de démontrer que l'état isolant prévu n'existe pas. Ce résultat résout ainsi le paradoxe créé par la prédiction, selon lequel à la limite R infini, aucune jonction Josephson ne devrait être supraconductrice !

 

28 février 2021

La plupart des fluides qui nous entourent -atmosphère, océans, rivières- sont turbulents et caractérisés par des mouvements tourbillonnaires et fluctuants sur une large gamme d’échelles spatiale et temporelle. Ainsi, alors qu’on connaît leurs équations d’évolution - les équations de Navier-Stokes - depuis près de 200 ans, on ne peut que rarement reproduire leur comportement "in silico" avec une simulation numérique sans modèle additionnel pour les petites échelles, faute d’espace mémoire et de capacité de calcul suffisants, même sur les ordinateurs actuels les plus performants.

Ainsi, pour comprendre les propriétés des écoulements très turbulents, les expériences "in fluido" restent incontournables, même s'il est souvent difficile d’avoir accès à des cartographies détaillées du mouvement tourbillonnaire à toutes les échelles, faute de moyens de mesures adaptés.

Une collaboration entre les équipes expérimentales du SPEC/SPHYNX et du LMFL et une équipe numérique du LIMSI a réussi pour la première fois la prouesse de produire une comparaison détaillée des propriétés locales et globales de la turbulence sur une grande gamme d’échelles dans un écoulement de von Kármán. Cette avancée a pu être obtenue grâce à des méthodes innovantes de simulations numériques et des méthodes d’imagerie laser à très haute résolution. Ces études vont prochainement être complétées à des échelles encore plus petites grâce à l’arrivée au SPEC/SPHYNX d'u' nouveau dispositif "Giant Von Kármán".

19 février 2021
Une équipe réunissant des chercheurs du SPEC, de l’IPhT et de l’ENS-Paris a montré l’absence de transition de Gardner dans un verre moléculaire archétypique – le glycerol - jusqu’à une température de 10 K. Cette transition, déjà identifiée dans d’autres systèmes vitreux (granulaires vibrés ou colloïdes) pourrait être la clef permettant de relier la façon dont ces systèmes amorphes se figent – lorsqu’ils se forment - à leurs propriétés mécaniques lorsqu’ils sont solides. On peut ainsi entrevoir un début d’explication à la différence entre matériaux amorphes mécaniquement fragiles ou non [1].

 

Retour en haut