| Centre
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST | English
Univ. Paris-Saclay

Projets 2018

18 janvier 2018

Le projet européen 3εFERRO consiste à concevoir et développer de nouvelles mémoires ferroélectriques non-volatiles,  dont on peut changer d'état par l'application d'un simple champ électrique, et directement intégrés dans des circuits logiques de type CMOS (donc compatibles avec la filière technologique silicium). De telles mémoires doivent permettre le développement de nouveaux dispositifs et de réduire drastiquement la consommation électrique du traitement et stockage de l'information.

04 octobre 2018
iNanoTheRad : un programme IDEX de l'Université Paris-Saclay pour les domaines : Biologie et chimie des radiations, Signalisation cellulaire et cancer



04 octobre 2018
DNA as a training platform for photodynamic processes in soft materials

LightDyNAmics is a European project entitled "DNA as a training platform for photodynamic processes in soft materials". (ETN H2020) started on April 2018. Some key aspects studied in the frame of this project are illustrated in the cartoon below.


21 août 2018

Project acronym: FLAVE
Project title: "Project Energetics of natural turbulent flows: the impact of waves and radiation".
Researcher (PI): Basile GALLET
Host Institution (HI):  CEA
Call Details: Starting Grant (StG), PE3, ERC-2017-STG


Turbulence in natural flows is an outstanding challenge with key implications for the energetics of planets, stars, oceans, and the Earth’s climate system. Such natural flows interact with waves, radiation or a combination thereof: surface waves and solar radiation on oceans and lakes, bulk waves and radiation inside the rapidly rotating and electrically conducting solar interior, etc. Standard simplified models often discard waves, radiation, or both, with dramatic consequences for the energy budget of natural flows: geostrophic models neglect waves, and Rayleigh-Bénard thermal convection considers heat diffusively injected through a solid boundary, in strong contrast with radiative heating. The purpose of the present multidisciplinary project is to develop a consistent and coupled description of natural flows interacting with waves and radiation, to properly assess their energy budget:

  • Because resolving surface waves in global ocean models will remain out-of-reach for decades, I will derive and investigate reduced equations describing their two-way coupling to the ocean currents, with timely implications for the upwelling of nutrients, the strength of the global ocean circulation and ultimately CO2 sequestration and the climate system. 
  • Building on my recent advances in the field of rotating and magnetohydrodynamic turbulence, I will derive a set of reduced equations to simulate such turbulent flows in the vicinity of the transition where bulk 3D waves appear on a 2D turbulent flow. This approach will allow me to reach unprecedented parameter regimes, orders of magnitude beyond state-of-the-art 3D direct numerical simulations (DNS).
  • Finally, I will combine state-of-the-art DNS with a versatile experimental platform to determine the structure, kinetic energy and heat transport of turbulent radiative convection in various geometries. I will extrapolate the resulting scaling-laws to the ocean circulation, the mixing in lakes and the solar tachocline.

Start date: 2018-03-01, End date: 2023-02-28.


Retour en haut