| Centre
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST | English
Univ. Paris-Saclay

Projets 2013

23 octobre 2013

ANR-12-BSV5-0003, coordination and contact Patrick Berthault - LSDRM.

This ambitious project aims at proposing the combined use of hyperpolarized 129Xe NMR, micro-fluidics and micro-coils as an ultra sensitive biosensing tool for diagnosis purposes.

Objectives and means

The final objective of this project is to integrate all developments and discoveries in an NMR lab-on-chip type system of general applicability for various in vitro biological diagnoses on commercial NMR spectrometers.

  1. Two main properties of the noble gas will be used:
    • the extraordinary receptiveness of xenon to its local environment in terms of NMR parameters and particularly chemical shift.
    • the huge gain in sensitivity afforded by the hyperpolarization
19 janvier 2013
ANR-FWF Project: NMR Investigation of MAGnetization-Induced Non-linear Effects

Globally large efforts are dedicated to improve the sensitivity of NMR mainly via two complementary approaches:

  • (i) increasing nuclear polarization by ever-increasing magnetic fields or more efficiently by exploiting transiently polarized species
  • (ii) improving the detection, in particular through the use of cold probes.

However these developments entail the appearance of new phenomena related to the non-linear evolution of nuclear magnetization in liquid samples (See for instance for a review in this field).

In most cases they result from the intricate combination of:

  • (i) the non-linear coupling between the nuclear magnetization and the detection coil (radiation damping)
  • (ii) the enhanced contribution of long-range magnetic interactions, not averaged out by the Brownian motion (distant dipolar fields, DDFs).

These effects are actually met in a wide range of other physical systems (such as Bose-Einstein condensates, superfluid 3He, or quantum entangled spin systems).


Retour en haut