| Centre
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST | English
Univ. Paris-Saclay

Projets 2013

29 octobre 2013
Laboratoire de Nanophotonique


SMAL'LEDNano-composants électroluminescents à base de molécules uniques
Projets clos :
NANOCRISNET : Plate-forme multifonctionnelle pour la l'élaboration de réseaux de nanocristaux organisés a longue distance
HAPPLE : Nanoemetteurs plasmoniques hybrides anisotropes
SAMPLE : Architectures supramoléculaires sur métal pour l'exaltation plasmonique de la luminescence
SAMIRÉ : Sondes Actives pour la MIcroscopie optique en champ proche à très haute RÉsolution
COME-ON : Contrôle Optique du Mouvement Et de l’Organisation de Nanoparticules
29 octobre 2013
Plasmons de surface de nanoparticules fluorescentes hybrides coeur-coquilles obtenues par photoréduction en microemulsion

Projet France (CEA) - Roumanie (IFA)

Octobre 2012 - Septembre 2014


Partenaires :

  • Laboratoire de nanophotonique, CEA / saclay (Fabrice Charra)
  • Center for Surface Science and NanoTechnology, Univ. Politehnica Bucarest (Maria Mihaly)
29 octobre 2013
Piégeage et contrôle optique de nano-objets par des substrats métalliques ou diélectriques nano-structurés

Projet du Triangle de la Physique - Thème Nanophotonique (equipement / Fonctionnement)

Janvier 2012 - Décembre 2014


Partenaires :

29 octobre 2013
Manipulation optique de nano-objets

Projet du Labex NanoSaclay - Nanophotonique : nano-objets pour le contrôle de l'’énergie 

2012 - 2014


Partenaires :

  • Laboratoire de nanophotonique, CEA / saclay (Fabrice Charra, coordinateur)
  • Equipe Nanosciences Moléculairss, ISMO U. Paris-Sud (Gérald Dujardin, membre du bureau)
  • Laboratoire Photonique et Nanostructures, CNRS Marcoussis (Robert Kuszelewicz, membre du bureau)
  • Laboratoire de photophysique et photochimie supramoléculaires et macromoléculaires, ENS Cachan (Keitaro Nakatani, membre du bureau, Anne Débarre)
  • Laboratoire PMC, Cnrs - Ecole Polytechnique (Jacques Peretti)
  • Laboratoire de Chimie Inorganique, ICMMO U. Paris Sud (Anne Bleuzen)
  • groupe Nanophotonique et Electromagnétisme, Laboratoire Charles Fabry, IOGS (Jean-Jacques Greffet)
  • Groupe Edifices Nanométriques, CEA / Saclay (Cécile Reynaud)
  • Laboratoire de Chimie des Surfaces et Interfaces, CEA / Saclay (Serge Palacin)
29 octobre 2013
Sondes Actives pour la MIcroscopie optique en champ proche à très haute RÉsolution

Projet ANR P2N - Programme Nanotechnologies et Nanosystèmes

Décembre 2013 - Mai 2017


Partenaires :


Doctorant CEA :

Accès au site de partage pour les membres du consortium

29 octobre 2013
Architectures supramoléculaires sur métal pour l'exaltation plasmonique de la luminescence

Projet ANR Blanc - Sciences de l'information, de la matière et de l'ingénierie : Nanosciences


projet Triangle de la Physique - Co-financement de thèses 2014


Janvier 2014 - Juin 2017


Partenaires :


Doctorant CEA / Triangle de la physique :

  • Sylvain Le Liepvre, Auto-assemblages moléculaires pour l'émission stimulée de plasmons (Ecole Doctorale Ondes et Matière, EDOM)
29 octobre 2013
Nanoemetteurs plasmoniques hybrides anisotropes

Projet ANR Blanc - Sciences de l'information, de la matière et de l'ingénierie : Nanosciences

Janvier 2013 - Décembre 2016


Partenaires :

  • LNIO Institut Charles Delaunay, Université de Technologie de Troyes (Renaud Bachelot, coordinateur)
  • Laboratoire de nanophotonique, CEA / Saclay (Fabrice Charra)
  • Laboratoire Francis Perrin, CEA / CNRS Saclay (Sylvie Marguet)
  • Institut de science des matériaux de mulhouse, CNRS (Olivier Soppera)

Doctorante CEA :

29 octobre 2013
Plate-forme multifonctionnelle pour l'élaboration de réseaux de nanocristaux organisés a longue distance

Projet ANR Blanc - Sciences de l'information, de la matière et de l'ingénierie : Nanosciences

Mars 2012 - Juillet 2015


Partenaires :



29 octobre 2013
Contrôle Optique du Mouvement Et de l’Organisation de Nanoparticules

Projet ANR Blanc - Sciences de l'information, de la matière et de l'ingénierie : Nanosciences

Décembre 2010 - Décembre 2014 (clos)


Partenaires :


Doctorante CEA :

29 janvier 2013
Chemical switching of surface ferroelectric topology

« Back to the Group page « Back to the Contracts page

Project overview

The fundamental property of ferroelectric (FE) materials is their electrically switchable spontaneous polarization below the Curie temperature. However, the direction of the polarization in FE thin films is not only the result of an external electrical potential difference since it usually results from the minimization of the electrostatic energy in the whole sample. The polarization charge at the surface can be screened through a variety of mechanisms including extrinsic screening by adsorbate species, intrinsic screening by defects or free charge carriers in for example adjacent electrodes, surface and near surface structural changes (rumpling, relaxation and reconstruction) and by domain ordering which reduces the energy of the system by screening the depolarizing field through ordering of the FE domains with anti-parallel polarization.

  • The chemical potential can also switch the polarization.
  • Conversely, the polarization can influence surface chemical reactions.

It has been suggested that oxygen vacancies stabilize negative polarization, i.e. polarization pointing inwards. The topology of the surface FE order is therefore a complex interaction of the chemical and electronic environment.

In this project, photoelectron spectroscopy with energy, wave-vector and spatial resolution will be used to study the electronic and chemical structure of the FE topology and the mechanisms responsible for chemically induced switching. Surface composition by high resolution XPS and band structure determination by ARUPS will be compared with theory. Structural determination will include electron diffraction (LEED, RHEED) and X-ray photoelectron diffraction (XPD), while the surface morphology, FE topology and chemistry will be assessed by scanning probe microscopy (SPM) techniques and by low energy electron microscopy (LEEM) and photoelectron emission microscopy (real and reciprocal space PEEM). The project will advance understanding of the electronic, structural, and compositional origins of chemical switching of polarization. It will explore the chemical potential-temperature phase diagrams through the use of atomic oxygen and vicinal surfaces. Finally, it will furnish an understanding of the switching chemistry vital to a wide range of applications such as ferroelectric enhanced catalysis and photolysis, chemical sensing, screening mechanisms in oxide based electronics.



  • Project ANR Blanc International II - Edition 2012 - France/Roumanie



  • Funding amount : 332 837 euros
  • Project duration : 36 mois

Related Open Positions

23 octobre 2013

ANR-12-BSV5-0003, coordination and contact Patrick Berthault - LSDRM.

This ambitious project aims at proposing the combined use of hyperpolarized 129Xe NMR, micro-fluidics and micro-coils as an ultra sensitive biosensing tool for diagnosis purposes.

Objectives and means

The final objective of this project is to integrate all developments and discoveries in an NMR lab-on-chip type system of general applicability for various in vitro biological diagnoses on commercial NMR spectrometers.

  1. Two main properties of the noble gas will be used:
    • the extraordinary receptiveness of xenon to its local environment in terms of NMR parameters and particularly chemical shift.
    • the huge gain in sensitivity afforded by the hyperpolarization
19 janvier 2013
ANR-FWF Project: NMR Investigation of MAGnetization-Induced Non-linear Effects

Globally large efforts are dedicated to improve the sensitivity of NMR mainly via two complementary approaches:

  • (i) increasing nuclear polarization by ever-increasing magnetic fields or more efficiently by exploiting transiently polarized species
  • (ii) improving the detection, in particular through the use of cold probes.

However these developments entail the appearance of new phenomena related to the non-linear evolution of nuclear magnetization in liquid samples (See for instance for a review in this field).

In most cases they result from the intricate combination of:

  • (i) the non-linear coupling between the nuclear magnetization and the detection coil (radiation damping)
  • (ii) the enhanced contribution of long-range magnetic interactions, not averaged out by the Brownian motion (distant dipolar fields, DDFs).

These effects are actually met in a wide range of other physical systems (such as Bose-Einstein condensates, superfluid 3He, or quantum entangled spin systems).


Retour en haut