Univ. Paris-Saclay

Service de Physique de l'Etat Condensé

7 sujets /SPEC/LNO

Dernière mise à jour : 26-05-2019


 

Dynamique de l’aimantation de nanostructures dans des régimes fortement hors-équilibre

SL-DRF-19-0955

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Grégoire de Loubens

Date souhaitée pour le début de la thèse : 01-10-2019

Contact :

Grégoire de Loubens

CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 71 60

Directeur de thèse :

Grégoire de Loubens

CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 71 60

Page perso : http://iramis.cea.fr/Pisp/gregoire.deloubens

Labo : https://www.speclno.org

Ce sujet de thèse consiste à étudier, comprendre et contrôler les régimes linéaires et non-linéaires de la dynamique de l'aimantation dans des nanostructures individuelles de matériaux magnétiques présentant un très faible amortissement. Pour cela, une technique originale de champ proche développée dans le laboratoire d’accueil pour détecter la dynamique de spin à l’échelle nanométrique sera employée pour mener les expériences, et des outils analytiques et des simulations micromagnétiques seront utilisés pour leur interprétation. Ce travail s'insère dans le cadre d'un projet ANR dont le but est de démontrer la manipulation d'ondes de spin cohérentes et de forte amplitude dans des dispositifs combinant des concepts de la magnonique et de l'électronique de spin.



Mots clés : dynamique de l'aimantation; nanomagnétisme; spintronique; magnonique ; systèmes dynamiques non-linéaires

Méthodes : microscopie à force magnétique ; techniques hyperfréquences ; simulations micromagnétiques

Détection d'objets biologiques submicroniques à l'aide d'un laboratoire sur puce à base de capteurs à Magnétorésistance Géante

SL-DRF-19-0361

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Guenaelle Jasmin-Lebras

Stéphanie SIMON

Date souhaitée pour le début de la thèse : 01-02-2018

Contact :

Guenaelle Jasmin-Lebras

CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 65 35

Directeur de thèse :

Stéphanie SIMON

CEA - DRF/Joliot/DMTS/SPI/LERI

01 69 08 77 04

Page perso : http://iramis.cea.fr/Pisp/guenaelle.jasmin-lebras/

Labo : http://iramis.cea.fr/spec/LNO/

Le développement de techniques de diagnostic précoce est un vrai défi dans le domaine médical ou de la défense. Il s’agit d’obtenir un outil capable de détecter rapidement, de façon simple, sensible et spécifique, différents objets biologiques rares en réponse à un besoin d’urgence de diagnostic clinique et/ou de biosécurité. L’approche proposée par le LERI et le LNO est en cela très innovante. Elle est basée sur la combinaison d’un marquage spécifique des anticorps développés au LERI avec des nanoparticules magnétiques et leur détection dynamique avec des capteurs magnétiques très sensibles à base d’électronique de spin. Ce sujet fait actuellement l’objet d’une thèse, qui a permis d’apporter la preuve de concept de la spécificité du test en étudiant un modèle de lignée de cellules de myélome murin. Un nouveau dispositif plus performant, avec des capteurs de part et d’autre du canal microfluidique, a été développé et fabriqué. Au cours de cette nouvelle thèse qui sera réalisée en collaboration avec le LERI, il s’agira de montrer que ce laboratoire sur puce est capable d’atteindre des performances suffisantes pour détecter des objets biologiques de plus petite taille, les bactéries. Le LERI dispose d’ores et déjà d’anticorps dirigés contre différentes bactéries (spores de bactéries gram(+) de Bacillus thuringiensis, bactérie gram(-) Salmonella Typhimurium) qui serviront de modèles d’étude de bactéries de la menace biologique. Au LERI, l'étudiant fonctionnalisera des particules magnétiques avec divers anticorps dirigés contre ces bactéries.

Au LNO, l’étudiant aura pour objectif de développer des laboratoires sur puce et évaluer leurs performances et robustesses. Il devra apprendre à les fabriquer avec les différentes techniques disponibles dans le service (salle blanche, découpe laser, machines de dépôts). Il devra concevoir un dispositif blindé transportable contre le bruit magnétique afin d’effectuer les mesures au LERI dans un environnement de haute sécurité microbiologique de niveau 2. Il adaptera les programmes de simulation et d’acquisition à la détection simultanée d’une bactérie par deux capteurs

Etude in operando de microstructures multiferroïques encapsulées de type ferrite - pérovskite

SL-DRF-19-0808

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Antoine BARBIER

Date souhaitée pour le début de la thèse : 01-10-2019

Contact :

Antoine BARBIER

CEA - DRF/IRAMIS/SPEC/LNO

01.69.08.39.23

Directeur de thèse :

Antoine BARBIER

CEA - DRF/IRAMIS/SPEC/LNO

01.69.08.39.23

Page perso : http://iramis.cea.fr/Pisp/137/antoine.barbier.html

Labo : http://iramis.cea.fr/spec/LNO/

Voir aussi : http://iramis.cea.fr/spec/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=2545&id_unit=9&id_groupe=179

Les oxydes ferroélectriques de structure pérovskite couplés à des ferrites magnétiques appartiennent à la nouvelle classe de matériaux multiferroïques artificiels. Ils suscitent un vif intérêt dans le domaine des applications liées à la spintronique et à la conversion de l’énergie. La nature du couplage, en particulier en condition d’opération sous stimulation d’un champ externe, reste largement inexplorée. La thèse proposée s’inscrit dans le cadre d’une collaboration forte entre le CEA/SPEC et synchrotron SOLEIL (ligne de lumière HERMES). On réalisera des inclusions monocristallines de ferrites dans un film pérovskite par épitaxie par jets moléculaires assistée par plasma d’oxygène atomique au CEA ou par traitement thermique. Le comportement de ces inclusions sera déterminé en fonctionnement et en utilisant des méthodes de caractérisations basées sur l’exploitation des centres rayonnement synchrotron les plus avancés et plus particulièrement la spectromicroscopie, l’absorption, la diffraction des rayons X et le dichroïsme magnétique sur les lignes de lumières HERMES, DIFFABS et DEIMOS du synchrotron SOLEIL dans une approche collaborative. Le (la) candidate abordera l’ensemble des techniques d’ultra-vide, la croissance par épitaxie par jets moléculaires, des mesures de magnétométrie ainsi qu’un large panel de méthodes de caractérisations basées sur l’exploitation des centres rayonnement synchrotron les plus avancés.

Matériau multifonctionnel pour la transition énergétique et l'opto-spintronique, à base de BaTiO3 dopé azote

SL-DRF-19-0483

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Antoine BARBIER

Date souhaitée pour le début de la thèse : 01-10-2019

Contact :

Antoine BARBIER

CEA - DRF/IRAMIS/SPEC/LNO

01.69.08.39.23

Directeur de thèse :

Antoine BARBIER

CEA - DRF/IRAMIS/SPEC/LNO

01.69.08.39.23

Page perso : http://iramis.cea.fr/Pisp/antoine.barbier/

Labo : http://iramis.cea.fr/spec/LNO/

Les oxydes dopés N et/ou les oxynitrures constituent une classe de composés en plein essor présentant un large panel de propriétés utilisables, en particulier pour les nouvelles technologies de production d'énergie décarbonnées et pour l’optoélectronique. En effet, l'insertion d'azote dans le réseau cristallin d'un oxyde semi-conducteur permet de moduler la valeur de sa bande interdite et ainsi d'obtenir de nouvelles fonctionnalités. La production de films minces monocristallins correspondants, est un défi important. Dans ce travail de thèse, des oxydes monocristallins dopés N seront élaborés par épitaxie par jets moléculaires assistée de plasma atomique. Le BaTiO3 fournira la ferroélectricité et un spectre d'absorption favorable, tandis qu'une ferrite ferrimagnétique additionnelle donnera un caractère (opto)multiferroïque artificiel. Les structures résultantes seront étudiées quant à leurs caractéristiques ferroélectriques, leurs couplages magnétoélectriques et optoélectroniques et leurs performances en photo-électrolyse pour la décomposition de l’eau, en fonction du dopage N. Ces observations seront corrélées à une compréhension détaillée des structures cristallines et électroniques.



Le (la) candidat(e) abordera l’ensemble des techniques d’ultra-vide, la croissance par épitaxie par jets moléculaires, des mesures de magnétométrie et de photo-électrolyse de l’eau, ainsi qu’un large panel de méthodes de caractérisations basées sur l’exploitation des centres rayonnement synchrotron les plus avancés.

Photo-électrolyse de l’eau assistée par un potentiel interne

SL-DRF-19-0755

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Hélène MAGNAN

Antoine BARBIER

Date souhaitée pour le début de la thèse : 01-10-2017

Contact :

Hélène MAGNAN

CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 94 04

Directeur de thèse :

Antoine BARBIER

CEA - DRF/IRAMIS/SPEC/LNO

01.69.08.39.23

Page perso : http://iramis.cea.fr/Pisp/helene.magnan/

Labo : http://iramis.cea.fr/spec/LNO/

Voir aussi : http://iramis.cea.fr/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=1996&id_unit=0&id_groupe=196

La photo-électrolyse de l’eau permet la production directe d’hydrogène, en utilisant l’énergie solaire. Les photo-anodes les plus performantes sont obtenues avec des oxydes métalliques. Toutefois, à ce jour, aucun oxyde semi-conducteur simple ne réunit toutes les propriétés de photo-anode nécessaires pour permettre une production raisonnable d’hydrogène par ce procédé.



Dans la thèse expérimentale proposée, nous proposons d’utiliser la polarisation électrique d’un ferroélectrique pour exalter la séparation de charge dans les photoanodes. Pour cette étude, nous étudierons des échantillons modèles préparés par épitaxie par jets moléculaires et étudierons l’influence de l’orientation de la polarisation électrique (vers le haut, vers le bas, non polarisé et multi domaines) sur l’efficacité pour la photo-électrolyse. De plus, afin de comprendre le rôle exact de la polarisation, nous mesurerons en utilisant le rayonnement synchrotron, la durée de vie de la paire électron-trou et la structure électronique pour les différents états de polarisation. Cette thèse s’inscrit dans un projet de recherche collaboratif entre le CEA, le synchrotron SOLEIL et avec l’université de Bourgogne pour la modélisation des systèmes étudiés.

Photoélectrodes à base d’hématite pour la photoélectrolyse de l’eau à faible consommation électrique

SL-DRF-19-0476

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Dana STANESCU

Gheorghe Sorin Chiuzbaian

Date souhaitée pour le début de la thèse : 01-10-2019

Contact :

Dana STANESCU

CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 75 48

Directeur de thèse :

Gheorghe Sorin Chiuzbaian

Université Sorbonne, Université Pierre et Marie Curie - Laboratoire de Chimie Physique Matière et Rayonnement

+33 1 44 27 66 15

Page perso : http://iramis.cea.fr/Pisp/dana.stanescu/

Labo : https://speclno.org/oxide%20nanorod.php

Voir aussi : https://www.synchrotron-soleil.fr/fr/lignes-de-lumiere/HERMES

La production d’hydrogène par électrolyse de l’eau est une approche propre et viable, mais très gourmande en énergie électrique, afin de franchir le potentiel d’oxydoréduction de l’eau. Pour réduire l’apport en énergie électrique nous étudions la possibilité d’utiliser le rayonnement solaire qui, absorbé par des oxydes semi-conducteurs identifiés et optimisés, génère des paires électrons-trous qui vont participer aux réactions d’oxydoréduction dans une cellule de photo-électrolyse. En associant une photo-anode et une photo-cathode en configuration tandem permettra dans l’idéal de s’affranchir complètement du potentiel électrique externe nécessaire pour initier la réaction.



Pour cette thèse nous proposons d’étudier, dans le but d’optimiser, des photo-électrodes à base d’hématite obtenus par voie chimique en solution aqueuse. Cette méthode nous permet d’obtenir des films nanostructurés sous forme de nano-bâtonnets orientés perpendiculairement au substrat. Les photo-anodes et les photocathodes seront obtenues en dopant l’hématite avec du Ti et Mg ou Zn, respectivement. L’activité photo-électrochimique sera corroborée avec la morphologie utilisant des techniques comme le SEM et l’AFM, ou encore avec le potentiel de surface déterminé utilisant le KPFM. De plus, une approche micro-spectroscopique utilisant le STXM de la ligne de lumière HERMES au Synchrotron SOLEIL, permettra de sonder à une échelle nanométrique la composition chimique et la structure électronique des photo-électrodes. De cette manière l’origine microscopique des propriétés de photoconduction sera discernée, nous indiquant les directions pour agir sur les paramètres physico-chimiques cruciaux menant à l’optimisation des photo-électrodes.

Spintronique ultra-rapide avec des isolants antiferromagnétiques

SL-DRF-19-0913

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Michel VIRET

Date souhaitée pour le début de la thèse : 01-10-2019

Contact :

Michel VIRET

CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 71 60

Directeur de thèse :

Michel VIRET

CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 71 60

Page perso : http://iramis.cea.fr/Pisp/michel.viret/

Labo : http://iramis.cea.fr/SPEC/LNO/

Parmi les états ordonnés de la matière, le magnétisme est robuste et présent jusqu’à des températures largement supérieures à l’ambiante pour une large gamme de matériaux. Les ferromagnétiques sont par conséquent largement utilisés dans les technologies de l’information. D’un autre côté, les anti-ferromagnétiques (AF), qui composent la grande majorité des matériaux magnétiques, ne sont pas (encore) utilisés comme éléments actifs. Dans ces composés, les moments magnétiques atomiques pointent dans des directions opposées entre voisins. L’aimantation résultante nulle rend cet ordre insensible à un champ magnétique et difficile à sonder. Par conséquent, les propriétés intrinsèques de la formation des domaines AF et la mobilité des parois de domaines sont peu connues.



Durant ces dernières années, il a été démontré que les AF métalliques peuvent présenter des propriétés de magnéto-résistance (résultant du couplage spin-orbite) ouvrant ainsi des perspectives d’utilisation dans des dispositifs de la spintronique. D’un autre côté, les isolants AF sont largement plus répandus que leurs cousins conducteurs car les interactions de super-échange dans les isolants sont assez généralement AF. Un contrôle direct de l’ordre AF requiert des champs magnétiques très intenses, généralement non disponibles en laboratoire. Les récentes avancées dans le domaine des effets de transfert de spin produits par des courants de spin, permettent en principe de générer des couples magnétiques changeant alternativement de signe sur chaque moment atomique orienté de manière opposée, idéaux pour contrôler l’ordre AF. Cet effet, qui offre donc une possibilité intéressante de contrôler l’ordre AF, n’a pas encore été démontré dans ces composés.



Le sujet de thèse proposé ici a donc pour but de valider ce mécanisme dans des oxydes AF réalisés en couches minces. La manipulation de l'ordre antiferromagnétique sera réalisée à l'aide de courants de spin générés par un mécanisme basé sur la désaimantation ultra-rapide d'une couche ferromagnétique déposée sur l'AF. La mesure sera effectuée en imagerie par seconde harmonique. Excitation et mesure sont toutes deux basées sur l'utilisation d'un laser femtoseconde.

Un volet simulations numériques sera aussi développé en utilisant un code (fait maison) existant basé sur l’évolution de spins localisés via l’équation Landau-Lifshitz-Gilbert.

• Physique du solide, surfaces et interfaces

 

Retour en haut