CEA
CNRS
Univ. Paris-Saclay

Service de Physique de l'Etat Condensé

Faits marquants 2013

19 décembre 2013

Le facteur de mérite TS2s/k qui caractérise le rendement d’un dispositif thermoélectrique est proportionnel au coefficient de Seebeck S et au rapport des conductivités électrique s et thermique k. Un effort considérable a été accompli récemment pour diminuer k, sans affecter s,  en fabricant des dispositifs nanométriques dont les dimensions sont inférieures au libre parcours moyen des phonons, mais supérieures à celui des électrons. Il existe aussi une classe de matériaux thermoélectriques (skuterrudites) où le libre parcours moyen des phonons se trouve naturellement réduit par l’existence de « cages » dans lesquelles certains atomes ont un large espace pour se mouvoir librement. On parle en anglais de « rattling », que nous prendrons la liberté de traduire par « effet hochet ».

 

 

 

 

 

Figure 1: Ordre des atomes de sodium dans le composé thermoélectrique Na4/5CoO2. Les atomes de sodium (en vert) occupent les sites de plus basse énergie et forment des cages enfermant trois lacunes et trois atomes de sodium (en rouge) occupant d'autres sites d’énergie légèrement plus élevée. Cette structure est celle correspondant à la minimisation de l'énergie électrostatique. Les atomes en rouge se déplacent librement, à la manière de boules dans un hochet. Il contribuent à des modes de phonon de type Einstein, de basse énergie, qui en diminuant d'un facteur 6 la conductibilité thermique. augmentent le rendement pour une conversion de chaleur en énergie électrique

16 juillet 2013

La possibilité d’utiliser la chaleur issue de processus industriels comme source d’énergie d’appoint en complément de l’énergie d’origine fossile est une alternative  de plus en plus envisagée. La  récupération de cette énergie thermique peut être obtenue par voie thermoélectrique (effet Seebeck). Ainsi, quand on applique un gradient de température ΔT à un solide conducteur, les électrons en contact avec la partie chaude acquièrent une énergie cinétique et diffusent vers la région froide, ce qui crée un champ électrique E=-∇V = SeT.  Le coefficient Se est le coefficient Seebeck et caractérise  la conversion de la chaleur en énergie électrique. Plus précisément, le rendement de la conversion, défini comme le rapport entre la puissance électrique obtenue et la puissance thermique injectée dans le système, est une fraction η =ηC .f(ZT), du rendement de Carnot ηC , où  f(ZT) est une fonction monotone croissante du paramètre adimensionnel ZT, appelé « facteur de mérite »:

ZT = T Se2 (σ/k)

σ est la conductivité électrique du matériau, k sa conductivité thermique et T la température moyenne.

Le rendement de conversion thermoélectrique h rejoint le rendement de Carnot hC quand le facteur de mérite ZT tend vers l’infini.  La recherche de matériaux adaptés pour la conversion thermoélectrique est donc vouée à l’étude de matériaux présentant des facteurs de mérite élevés. Actuellement, certains semi-conducteurs à faible gap et fortement dopés donnent des facteurs de mérite de l’ordre de 1. Un facteur de mérite de 3 donnerait un rendement acceptable de 0.33 ηC . La recherche de facteurs de mérite plus élevés s’oriente de plus en plus vers des matériaux nanostructurés pour lesquels de faibles valeurs  de la conductivité thermique ont été obtenues tout en conservant des valeurs élevées de la conductivité électrique (voir l’équation ci-dessus). Les matériaux nanostructurés bien que possédant des propriétés intéressantes présentent toutefois des coûts de fabrication élevés et ne sont utilisés aujourd’hui qu’au stade du laboratoire.

Une autre voie de recherche qui consiste à utiliser les électrolytes comme porteurs de charge à la place des électrons ou des trous dans les matériaux solides est encore peu explorée. Le coefficient Seebeck étant directement relié à l’entropie transportée par les ions, on s’attend à des valeurs élevées de Se dans des électrolytes contenant des macro-ions. Les systèmes thermiques pour la conversion thermoélectrique basée sur les électrolytes sont appelés cellules thermogalvaniques.

En 2011, nous avons mesuré des valeurs élevées du coefficient Seebeck, de l’ordre de 7 mV/K dans des électrolytes contenants de gros ions tetra-alkylammoium en solution dans des alcanes [1] à comparer aux matériaux solides qui ont un coefficient Seebeck de quelques centaines de mV/K. Malheureusement, ces mélanges ioniques présentent de faibles valeurs de la conductivité électrique ionique ce qui pénalise fortement le facteur de mérite. L’utilisation des  liquides ioniques purs ou en solution permet d’obtenir des valeurs élevées de la conductivité électrique proche de celle mesurée dans les solides conducteurs.

L’obtention d’un courant électrique à partir d’une cellule thermoélectrique peut s’obtenir via une réaction d’oxydo-réduction aux électrodes. Abraham et al. [2] ont mesuré récemment le pouvoir thermoélectrique dans différents liquides ioniques avec le couple redox I-/I3-.  Ils ont montré que le liquide ionique pouvait avoir une influence sur le changement d’entropie de la réaction redox.

Nous avons étudié en détail les propriétés thermoélectriques du liquide ionique 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM+BF4-) en solution dans de l’acétonitrile (AN) en fonction de la concentration du liquide ionique CIL. Ce mélange binaire ionique possède une conductivité électrique parmi les plus élevées de l’ordre de 70 mS cm-1 à une concentration CIL=2.5 M. Afin d’obtenir un transfert réversible d’électrons aux électrodes de platine ou de carbone vitreux  le couple redox organique thiolate/disulfide (McMT-/BMT) a été ajouté au mélange binaire ionique. Ce couple redox a été aussi proposé comme une alternative au couple I-/I3- utilisé dans les cellules solaires à colorants.

Le montage expérimental que nous avons utilisé pour mesurer l’effet thermoélectrique est montré dans la Figure 1.

09 janvier 2013

Afin de traiter correctement la dynamique de spin pour des nano-objets, le Groupe Modélisation et Théorie du SPEC, en collaboration étroite avec une équipe du CEA/DAM, Le Ripault, a mis au point un modèle générique décrivant à l’échelle atomique la dynamique spatiale des atomes couplée à leur aimantation de spin. Sur cette base, il est possible de rendre compte, à l'aide d'un code de dynamique moléculaire magnétique optimisé, de détails fins du magnétisme du cobalt massif et de l'évolution rapide du magnétisme d'îlots nanométriques.

 

12 décembre 2013

Les méthodes de nanostructuration de surface sont à la source de nombreux progrès en nanotechnologies. Une collaboration rassemblant des équipes française, italienne et une société franco-américaine [1] ont mis en évidence l’ouverture de nanotunnels sous la surface d’un semi-conducteur, le carbure de silicium (SiC). Ce phénomène, induit par l'interaction d'atomes d'hydrogène/deutérium (H/D) à la surface du SiC est particulièrement intéressant, du fait des propriétés intrinsèques de ce semi-conducteur. Il est aussi remarquable qu'en fonction de l'exposition à l’H/D, les nanotunnels suivent une séquence de transitions semi-conducteur/métal/semi-conducteur. Ces résultats ont été obtenus par des expériences de pointe (étude par rayonnement synchrotron, techniques de spectroscopies vibrationnelles) conjointement  à des simulations théoriques. 

Ce type de nanostructure à la surface du SiC, ainsi mis en évidence, peut ouvrir la voie à de nombreuses applications en électronique, chimie, stockage, ou pour des capteurs et en biotechnologie.

18 mars 2013
Une collaboration Laboratoire Léon Brillouin – Service de Physique de l’Etat Condensé

   Le titanate de Terbium Tb2Ti2O7 est un oxyde isolant à réseau pyrochlore (un réseau spécial formé de tétraèdres se touchant par leurs sommets), dont la géométrie est telle que les ions magnétiques (les terres rares Tb) ne peuvent pas trouver de configuration de spin qui satisfasse toutes les interactions antiferromagnétiques en même temps. Ce phénomène est appelé frustration géométrique et suscite depuis une douzaine d’années d’intenses recherches aussi bien théoriques (pour comprendre la frustration et ses effets) qu’expérimentales (pour explorer ces systèmes avec toutes sortes de sondes et à très basse température).  Le titanate de Terbium est un cas extrême car la frustration conduit dans son cas à une absence d’ordre magnétique des moments (ou spins) de Tb jusqu’à des températures de l’ordre de 0,05K. Mais sa description théorique a résisté jusqu’à présent à toutes les tentatives. Normalement, et en tenant compte de la frustration,  Tb2Ti2O7 devrait présenter un ordre magnétique au-dessous d’environ 1 à 2K. Mais en fait, il reste un « liquide » (de spin) jusqu’à 0,05K, car les spins, bien qu’interagissant entre eux, restent fluctuants et ne se « gèlent » pas.

La diffusion des neutrons par les moments du Tb permet d’explorer ce type d’état en déterminant les corrélations existant dans la phase liquide de spin, ou plus précisément en traçant des cartes dans l’espace réciproque qui reflètent ces corrélations de spin. Les modèles théoriques sont ensuite jaugés à l’aune de ces cartes, qu’ils sont censés reproduire, au moins dans leurs grands traits.   

18 février 2013

Une nanostructure ferromagnétique est un résonateur : mise hors d’équilibre, son aimantation précesse naturellement dans la gamme du GHz. Cela crée un champ de fuite dipolaire à longue portée qui peut être suffisamment intense pour coupler plusieurs oscillateurs ferromagnétiques rapprochés. Il est important de quantifier expérimentalement l’intensité de ce couplage dynamique entre nanostructures magnétiques. Du point de vue fondamental, cela permet de vérifier les prédictions des modèles analytiques existants (qui négligent souvent les termes de couplage d’ordres élevés) et des codes micromagnétiques. Du point de vue des applications, l’interaction dipolaire dynamique peut être utilisée pour contrôler la propagation des ondes de spin (ou magnons) dans des réseaux de nanostructures magnétiques dans le cadre de la « magnonique », une nouvelle discipline qui vise à utiliser les magnons pour le traitement et le stockage d’information. En outre, le couplage dipolaire est un mécanisme prometteur pour synchroniser des réseaux de nano-oscillateurs micro-onde pompés par transfert de spin, afin d’améliorer leur cohérence et la puissance émise [1].

Pour obtenir une mesure quantitative de ce couplage dipolaire dynamique, nous avons étudié le système le plus simple : des paires de nano-disques de diamètre 2R = 600 nm séparés de s = 200 à 800 nm bord à bord. La croissance épitaxiale du matériau magnétique choisi – un alliage de FeV d’épaisseur 27 nm de forte aimantation et faible relaxation – et la nanofabrication des échantillons ont été réalisées à l’Institut Jean Lamour de l’Université de Lorraine. Pour détecter la dynamique de l’aimantation dans ces nanostructures, nous avons utilisé la technique de microscopie de force à résonance magnétique (MRFM) développée au SPEC. Elle consiste à détecter mécaniquement la variation d’aimantation de l’échantillon à l’aide d’une sonde magnétique sphérique de diamètre 800 nm collée à l’extrémité d’un micro-levier, comme représenté sur la Fig.1 [2]. Outre sa grande sensibilité, cette technique de champ proche permet une détection locale de la dynamique de l’aimantation. De plus, grâce au champ de fuite de la sonde, elle permet un codage spatial de la fréquence de résonance, comme en imagerie par résonance magnétique (IRM) [3]. Cela est illustré par la courbe en cloche de la Fig.2a, qui montre la variation de fréquence de résonance d’un nano-disque de FeV excité par un champ micro-onde hrf, en fonction de la position latérale de la sonde MRFM, qui est scannée à altitude constante (h = 1.8 µm) au-dessus de l’échantillon.

28 octobre 2013

Les progrès en nano-électronique quantique permettent d'observer dans un conducteur les interférences entre électrons, comme le font des photons en optique, ou encore de mesurer leur bruit quantique (ou bruit Schottky, l’analogue pour des électrons du bruit de photon , lié à la nature discrète des particules).

Pour compléter cette optique quantique électronique, il manquait une source d’électrons à la demande, simple et fiable. La difficulté résidait dans le fait que, contrairement aux photons qui se meuvent dans le vide, un conducteur contient déjà des charges qui ne demandent qu’à s’agiter lors de l’injection d’un électron.

Suivant une proposition datant de presque vingt ans de L. Levitov, théoricien au MIT, les chercheurs du SPEC ont réussi à injecter un nombre entier d’électron dans le conducteur sans le perturber en appliquant des impulsions de tension de forme Lorentzienne. Celles-ci génèrent une excitation fondamentale présentant une parenté avec les solitons, qu’ils ont appelé "Léviton". Cette première, à paraître dans la revue Nature, ouvre des perspectives en physique quantique dépassant le champ de la nano-électronique : en effet, des Lévitons atomiques pourraient être pareillement réalisés avec des atomes froids (gaz de fermions).  

 

11 juin 2013


 

L’effet Josephson décrit le flot de supercourant à travers un lien faible entre deux supraconducteurs, comme une jonction tunnel, un nanofil ou une molécule. Il est à la base d’une grande quantité de dispositifs (magnétomètres - SQUIDs, convertisseurs fréquence-tension de très haute précision, détecteurs de photons large bande) avec des applications allant de la médecine, à l’information quantique ou encore l'astronomie.

Microscopiquement, le supercourant est porté par des états de paires de Cooper localisées au lien faible. Ces états, appelés états d’Andreev, viennent par doublets, et ont des énergies inférieures au gap supraconducteur. Les circuits Josephson existants sont basés sur les propriétés des états fondamentaux de chaque doublet et, jusqu’à maintenant, les états de paires excitées n’avaient jamais été directement détectés. Nos expériences établissent leur existence par des mesures spectroscopiques de contacts atomiques supraconducteurs [1].

 

Le spectre d’énergie d’un supraconducteur massif isolé présente un gap 2Δ autour de l’énergie de Fermi. Ce gap représente l’énergie minimale pour exciter une paire de Cooper. À un lien faible entre deux supraconducteurs, où la phase supraconductrice peut facilement être tordue, le spectre est localement modifié, avec notamment l’apparition de doublets d’états dans le gap. Ces états, appelés états d’Andreev, ont des énergies ±EA qui dépendent de la différence de phase δ entre les électrodes et de la probabilité de transmission des électrons (voir Figure 1). Comme l’énergie des états d’Andreev est inférieure au gap Δ, ils ne peuvent pas se propager dans les supraconducteurs massifs et restent ainsi localisés au lien faible. L’état d’énergie -EA correspond donc à une paire de Cooper localisée dans son état fondamental ; l’excitation de plus faible énergie est une excitation de cette paire de Cooper vers l’état d’énergie +EA.

19 août 2013

Une fracture sous l'effet d'une contrainte peut se propager de façon continue ou intermittente, et il est technologiquement très utile de pouvoir prédire dans quel régime se produira la propagation d'une éventuelle fissure. Par une approche statistique, une description globale des deux régimes a pu être obtenue, ainsi que le diagramme de phase précisant leurs conditions d'apparition. De plus, l'étude montre que les deux régimes sont de nature profondément différente : le régime intermittent présente des fluctuations à toutes les échelles de temps, ce qui rend la dynamique de fissuration imprévisible, quelle que soit l’horizon choisi.

 

16 juillet 2013

La possibilité d’utiliser la chaleur issue de processus industriels comme source d’énergie d’appoint en complément de l’énergie d’origine fossile est une alternative  de plus en plus envisagée. La  récupération de cette énergie thermique peut être obtenue par voie thermoélectrique (effet Seebeck). Ainsi, quand on applique un gradient de température ΔT à un solide conducteur, les électrons en contact avec la partie chaude acquièrent une énergie cinétique et diffusent vers la région froide, ce qui crée un champ électrique E=-∇V = SeT.  Le coefficient Se est le coefficient Seebeck et caractérise  la conversion de la chaleur en énergie électrique. Plus précisément, le rendement de la conversion, défini comme le rapport entre la puissance électrique obtenue et la puissance thermique injectée dans le système, est une fraction η =ηC .f(ZT), du rendement de Carnot ηC , où  f(ZT) est une fonction monotone croissante du paramètre adimensionnel ZT, appelé « facteur de mérite »:

ZT = T Se2 (σ/k)

σ est la conductivité électrique du matériau, k sa conductivité thermique et T la température moyenne.

Le rendement de conversion thermoélectrique h rejoint le rendement de Carnot hC quand le facteur de mérite ZT tend vers l’infini.  La recherche de matériaux adaptés pour la conversion thermoélectrique est donc vouée à l’étude de matériaux présentant des facteurs de mérite élevés. Actuellement, certains semi-conducteurs à faible gap et fortement dopés donnent des facteurs de mérite de l’ordre de 1. Un facteur de mérite de 3 donnerait un rendement acceptable de 0.33 ηC . La recherche de facteurs de mérite plus élevés s’oriente de plus en plus vers des matériaux nanostructurés pour lesquels de faibles valeurs  de la conductivité thermique ont été obtenues tout en conservant des valeurs élevées de la conductivité électrique (voir l’équation ci-dessus). Les matériaux nanostructurés bien que possédant des propriétés intéressantes présentent toutefois des coûts de fabrication élevés et ne sont utilisés aujourd’hui qu’au stade du laboratoire.

Une autre voie de recherche qui consiste à utiliser les électrolytes comme porteurs de charge à la place des électrons ou des trous dans les matériaux solides est encore peu explorée. Le coefficient Seebeck étant directement relié à l’entropie transportée par les ions, on s’attend à des valeurs élevées de Se dans des électrolytes contenant des macro-ions. Les systèmes thermiques pour la conversion thermoélectrique basée sur les électrolytes sont appelés cellules thermogalvaniques.

En 2011, nous avons mesuré des valeurs élevées du coefficient Seebeck, de l’ordre de 7 mV/K dans des électrolytes contenants de gros ions tetra-alkylammoium en solution dans des alcanes [1] à comparer aux matériaux solides qui ont un coefficient Seebeck de quelques centaines de mV/K. Malheureusement, ces mélanges ioniques présentent de faibles valeurs de la conductivité électrique ionique ce qui pénalise fortement le facteur de mérite. L’utilisation des  liquides ioniques purs ou en solution permet d’obtenir des valeurs élevées de la conductivité électrique proche de celle mesurée dans les solides conducteurs.

L’obtention d’un courant électrique à partir d’une cellule thermoélectrique peut s’obtenir via une réaction d’oxydo-réduction aux électrodes. Abraham et al. [2] ont mesuré récemment le pouvoir thermoélectrique dans différents liquides ioniques avec le couple redox I-/I3-.  Ils ont montré que le liquide ionique pouvait avoir une influence sur le changement d’entropie de la réaction redox.

Nous avons étudié en détail les propriétés thermoélectriques du liquide ionique 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM+BF4-) en solution dans de l’acétonitrile (AN) en fonction de la concentration du liquide ionique CIL. Ce mélange binaire ionique possède une conductivité électrique parmi les plus élevées de l’ordre de 70 mS cm-1 à une concentration CIL=2.5 M. Afin d’obtenir un transfert réversible d’électrons aux électrodes de platine ou de carbone vitreux  le couple redox organique thiolate/disulfide (McMT-/BMT) a été ajouté au mélange binaire ionique. Ce couple redox a été aussi proposé comme une alternative au couple I-/I3- utilisé dans les cellules solaires à colorants.

Le montage expérimental que nous avons utilisé pour mesurer l’effet thermoélectrique est montré dans la Figure 1.

 

Retour en haut