Laboratoire Nano-Magnétisme et Oxydes (LNO)

 

La stratégie globale de notre laboratoire est une compréhension approfondie du magnétisme en matière condensée avec un bon équilibre entre la recherche de pointe, le développement de nouveaux instruments et les applications.

SITE LNO

The overall strategy of our laboratory is in depth understanding of magnetism in condensed matter with a good balance between state-of-the-art research, development of new instruments, and applications.

LNO  WEBSITE

 

 
#179 - Màj : 06/09/2022
Thèmes de recherche

Nanomagnétisme et oxydes : spintronique, matériaux multiferroïques et nouveaux capteurs magnétiques

 Ce thème de recherche du SPEC porte sur l’élaboration et l’étude de : matériaux oxydes magnétiques ou multiferroïques* (ferroélectricité associée au magnétisme) la dynamique de l’aimantation dans les nanostructures hybrides et son couplage aux courants de spin (spintronique) le développement de capteurs de champ magnétique ultra-sensible et la modélisation associée.

Nanomagnétisme et oxydes : spintronique, matériaux multiferroïques et nouveaux capteurs magnétiques
Surfaces, couches minces et leurs propriétés multiferroïques et catalytiques

Surfaces, couches minces et leurs propriétés multiferroïques et catalytiques

Les surfaces d'un solide forment un lieu particulier, où les atomes de l'ultime couche atomique ont perdu la moitié de leurs voisins, comparé à un atome placé dans le volume. Il s'en suit des propriétés électronqiues très spécifiques.

Conversion de l'énergie

Le développement des nouvelles technologies pour l'énergie implique de maitriser les processus de conversion entre ses différentes formes (solaire, thermique, chimique, électrique, mécanique, ...),  ainsi que les procédés de stockage  : L'énergie solaire peut être directement transformée en énergie électrique via les processus photovoltaïques et stockée dans des accumulateurs.

Conversion de l'énergie
Domaines Techniques
Les nanotechnologies requièrent de réaliser des édifices complexes à l'échelle atomique. Ceux-ci sont généralement réalisées par dépôts sur un substrat (métal ou oxyde).

AO-MBE Oxydes à SPEC / LNO

Croissance par ablation laser pulsée femto-seconde d’hétérostructures à base d’oxydes pour la SPINtronique (CALPHOSPIN)

Dépôts, croissance, films minces
Mesures de transport
L'origine d'un phénomène de transport est l'application d'une force dont l'origine peut être variée (champ électrique ou magnétique, gradient de concentration, de pression etc ...) Sous la rubrique "mesures de transport" sont rassemblées différentes techniques de mesures associées qui peuvent être des mesures de flux (chaleur, particules, charges : courant électrique, etc ...

Appareil de mesure des propriétés de magnéto-transport

Mesures de capacitance

L'électrochimie est utilisée dans une large diversité de situations, que ce soit pour analyser des processus (corrosion, mécanismes de réactions en solution, etc... ) ou pour caractériser des matériaux -entre autre pour l'énergie.
A l’IRAMIS,  l’électrochimie est utilisée dans une large diversité de situations, que ce soit pour analyser des processus  (corrosion, mécanismes de réactions en solution, etc... ) ou pour caractériser des matériaux. Dans ce dernier volet, l’iramis a de nombreuses activités en électrocatalyse, dans les batteries, ou en biodétection.

Aqueous chemical growth of nanostructured oxide films

Banc de mesure de la photo-électrolyse de l’eau / spectroscopie d’impédance

Electrochimie
Magnétométrie
Les propriétés magnétiques des monocristaux ou films minces peuvent être étudiées par magnétométrie à échantillon vibrant (VSM ou "Vibrating Sample Magnemotry") ou effet Kerr (MOKE).

Banc multiferroïque

Dispositif d’effet Kerr sous ultravide (SMOKE : Surface Magneto-Optic Kerr Effect)

Magnétométrie à échantillon vibrant / Vibrating sample magnetometry

Les techniques de diffraction permettent de sonder l'ordre dans la matière. Pour ceci, on fait interagir une onde dont la longueur d'onde λ est comparable à la taille du motif cristallin élémentaire de l'échantillon. Ce peut être une onde électromagnétique (rayons X, lumière Laser) ou des particules (électrons, neutrons ou des atomes d'hélium).

Diffraction d'électrons (LEED et RHEED)

Diffraction
Spectroscopies électroniques
L'éclairement, par un rayonnement suffisamment énergétique, de la surface d'un matériau peut conduire à l'émission d'électrons dont la spectroscopie (étude en énergie) apporte des informations sur la composition de la surface étudiée.

Spectrométrie de photoélectrons X (XPS)

Les laboratoires de l'IRAMIS maitrisent de nombreux procédés de synthèse chimique en phase gaz (production de nanoparticules) ou en solution (molécules, catalyseurs...), avec l'objectif de développer de nouveaux procédés chimiques (chimie verte, énergie, recyclage...), d'élaborer des nanomatériaux, ou encore pour obtenir des cristaux de céramiques de haute qualité  (supraconducteurs notamment).

Synthesis and physico-chemical characterization of solid state materials @SPEC/LNO

Synthèse chimique et outils de caractérisation : molécules, nanomatériaux et cristaux /  Chemical synthesis and caracterisation tools: molecules, nanomaterials and crystals
La RMN à l 'IRAMIS
Patrick Berthault (NIMBE) et C. Fermon (SPEC)
Alternative à la diffraction des rayons X, la RMN est une méthode ben adaptée à l’étude des protéines et la caractérisation des produits chimiques de synthèse, ainsi que l’étude des matériaux désordonnés comme les verres, les polymères ou les bétons.
Voir aussi
Voir aussi
Grand Prix des applications Emilia Valori 2020 de l'Académie des Sciences décerné à Claude Fermon : Le Grand Prix des applications Emilia Valori* 2020 de l'Académie des Sciences est décerné à Claude Fermon de l'UMR SPEC CEA-CNRS, pour l'ensemble de ses travaux sur les vingt dernières années, qui ont porté sur l’électronique de spin et ses applications pour la détection de champs magnétiques.
Faits marquants scientifiques
23 février 2024
La spintronique est une discipline qui vise à remplacer la charge par le spin des électrons dans des dispositifs de l’électronique et des technologies de l’information. Son principe repose sur la manipulation de courants d’aimantation (de spin) qui peuvent remplacer avantageusement les courants de charges électriques trop consommateurs d’énergie.
07 septembre 2023
L’utilisation de l’hydrogène H2 comme vecteur d’énergie propre est l’un des axes technologiquement viables aujourd’hui1. L’hydrogène peut être produit par photoélectrolyse de l’eau : une réaction d’électrolyse utilisant des électrodes activées par la lumière solaire.
07 juin 2023
Le LLB et le SPEC s'équipent d'un four à image pour la croissance de monocristaux par la méthode de fusion de zone flottante. Cet équipement permettra de réaliser des monocristaux orientés de taille centimétrique et de haute pureté chimique, pour l’étude des matériaux quantiques (composés supraconducteurs, multiferroïques ou multifonctionnels...
07 décembre 2022
Un défi constant de la recherche dans le domaine de la santé, est le développement de techniques de diagnostic précoce, rapides, sensibles, transportables au chevet du patient, tout en étant peu coûteuses.
25 janvier 2022
Parmi les propriétés extraordinaires du graphène, il existe une anomalie magnétique géante prédite depuis les années 1950's et encore jamais mesurée directement.
10 mai 2021
Des capteurs magnétiques basés sur le déplacement d’un cœur de vortex dans une jonction tunnel magnétique sont actuellement proposés pour obtenir des réponses linéaires en champ sur une large gamme (typiquement quelques dizaines de mT) tout en gardant une très bonne sensibilité pour diverses applications, (automobiles, biomédical).
08 juillet 2020
Contacts SPEC : Dana Stanescu, Helene Magnan, Jean-Baptiste Moussy, Cindy Rountree, Antoine Barbier
Les matériaux ferroélectriques ont connu un essor considérable en raison de leurs applications potentielles dans des domaines comme la spintronique ou la conversion de l’énergie solaire1–3. Au SPEC nous avons étudié le rôle des interfaces, du substrat et des couches d’oxyde supérieures sur les propriétés ferroélectriques des hétérostructures à base des couches minces de BaTiO34.
11 février 2020
Les progrès continus dans l'exploration du magnétisme permettent de proposer de nouveaux dispositifs pour le traitement, le transfert ou le stockage de l'information. Les matériaux antiferromagnétiques et multiferroïques présentent une structure en domaines ferroélectriques.
26 novembre 2019
Le développement de techniques de diagnostic biologique précoce, à la fois rapides et sensibles, est un vrai défi dans des domaines aussi variés que la défense, l’environnement et la santé.
24 juillet 2019
Par l'étude du diagramme de phase de l’oxyde de cuivre HgBa2Ca2Cu3O8+δ, des chercheurs démontrent l’existence d’un lien d’origine microscopique entre l’état supraconducteur et la redistribution des charges dans le cristal (ordre de charge), qui se généralise à tous les oxydes de cuivre supraconducteurs.
11 mars 2019
La métrologie (spectroscopie, mesures de temps ou de distances) ou encore la réalisation de réseaux optiques quantiques nécessitent des sources de photons uniques efficaces. Une équipe du SPEC à Saclay, en collaboration avec l'IQST d'Ulm en Allemagne, démontre expérimentalement une voie originale pour obtenir une source de photons microonde uniques, simple, efficace et brillante.
15 octobre 2018
Le couplage magnéto-électrique suscite un vif intérêt dans le domaine des applications liées à la spintronique et à la conversion d’énergie. Des couplages forts rendent possibles  le pilotage des propriétés magnétiques par un potentiel électrique, l’effet inverse est aussi envisageable bien que technologiquement moins pertinent.
30 juillet 2018
Pure spin conductors could behave as nonlinear component in the high power regime, hereby opening up considerably the realm of functions realizable with magnetic materials. An additional feature is that these are continuously tunable by an external magnetic field.  
13 février 2018
Currents circulating in excitable cells like neurons or nerve fibers may be measured by the radiated magnetic field.  At the organ level, these magnetic fields can be detected by non-invasive experiments using highly sensitive magnetometers such as SQUIDS, atomic magnetometers or mixed sensors, the latter using spin electronics.
23 octobre 2017
En utilisant un atome artificiel dans le diamant comme détecteur de champ magnétique ultrasensible, des physiciens ont imagé pour la première fois le champ de fuite rayonné par un composé de la vaste famille des antiferromagnétiques.
29 juin 2017
Les matériaux antiferromagnétiques sont susceptibles de jouer un rôle important dans les futurs développements technologiques pour le stockage de l'information, mais leur état magnétique est difficile à sonder et à manipuler.
12 avril 2017
Du fait de leur très haute sensibilité, les capteurs magnétiques basés sur le principe de la magnétorésistance géante (Giant Magneto Resistance - GMR) ont de nombreuses applications, principalement dans le domaine de l'engistrement magnétique. Les applications biologiques ne sont pas en reste, puisque l'activité biologique (neuronale, musculaire, ...
15 décembre 2016
La réalisation de dispositifs basés sur l’électronique de spin (spintronique) où une molécule magnétique est le composant actif est un objectif de premier plan dans le domaine du magnétisme moléculaire.
17 novembre 2016
De nos jours, être capable de réaliser des mesures locales sur des très faibles volumes d’échantillons (inférieur au nanolitre), afin effectuer par exemple  un diagnostic précoce de certaines pathologies ou pour  détecter des d’objets de taille nanométrique ou subnanométriques; représente un réel défi.
04 novembre 2015
Laboratoire NanoMagnétisme et Oxydes
L'hydrogène est un vecteur énergétique prometteur qui cumule les avantages d'être stockable, d'offrir une alternative au pétrole comme carburant, et de pouvoir être produit de façon propre par photoélectrolyse de l'eau.
07 avril 2015
Pour améliorer le traitement efficace et rapide de l'information au cœur des dispositifs hyperfréquences, la recherche fondamentale fournit de nouvelles pistes à explorer : spintronique, plasmonique, magnonique… autant de termes qui aujourd'hui désignent des méthodes avec lesquelles il peut être possible de stocker, traiter et relire l'information codée dans des états de spin, les oscillations de charges dans un cristal (plasmons) ou encore celles de l'aimantation d'un matériau magnétique (ondes de spin ou "magnons").
18 décembre 2014
En 2010, des chercheurs japonais ont prouvé que du moment magnétique de spin pouvait être échangé entre l'aimantation d'un matériau ferromagnétique isolant et les électrons de conduction d'un métal normal adjacent [1].
06 juin 2014
Maxime Rioult, Hélène Magnan, Dana Stanescu et Antoine Barbier - Laboratoire des Interfaces et Surfaces d'Oxydes (LISO) - SPEC
Voici presque 4 ans, le groupe Oxydes (LISO) du SPEC s’est lancé le défi d’utiliser son expertise en croissance de films minces d’oxydes afin d’élaborer des matériaux modèles capables de convertir l’énergie solaire en hydrogène.
13 mars 2014
L’imagerie par Résonance Magnétique (IRM) est usuellement réalisée avec une polarisation des spins nucléaires sous un champ fort de plusieurs Tesla. Une IRM peut aussi être obtenue pour des champs de l'ordre du milliTesla, à condition de disposer d'un détecteur de sensibilité suffisante.
18 mars 2013
Une collaboration Laboratoire Léon Brillouin – Service de Physique de l’Etat Condensé
   Le titanate de Terbium Tb2Ti2O7 est un oxyde isolant à réseau pyrochlore (un réseau spécial formé de tétraèdres se touchant par leurs sommets), dont la géométrie est telle que les ions magnétiques (les terres rares Tb) ne peuvent pas trouver de configuration de spin qui satisfasse toutes les interactions antiferromagnétiques en même temps.
18 février 2013
Une nanostructure ferromagnétique est un résonateur : mise hors d’équilibre, son aimantation précesse naturellement dans la gamme du GHz. Cela crée un champ de fuite dipolaire à longue portée qui peut être suffisamment intense pour coupler plusieurs oscillateurs ferromagnétiques rapprochés. Il est important de quantifier expérimentalement l’intensité de ce couplage dynamique entre nanostructures magnétiques.
20 décembre 2012
Les éléments magnétorésistifs peuvent être utilisés dans des mémoires magnétiques ou des capteurs magnétiques. L’obtention d’une couche ferromagnétique bloquée est une condition indispensable à la réalisation de ces applications et est maintenant bien développée dans le cas des métaux.
19 avril 2011
La mesure de l’activité électrique cardiaque permet de suivre le fonctionnement dynamique du cœur. Habituellement mesuré à l’aide d’électrodes, lors d’un examen d’électrocardiographie (ECG), cette activité peut également être étudiée grâce à la composante magnétique induite par la circulation des courants cardiaques.
01 décembre 2010
L'un des objectifs les plus importants des technologies de l'information est le développement de mémoires non-volatiles rapides à haute densité, qui sont économes en énergie, et qui peuvent être produites par les technologies modernes de nanofabrication.
27 septembre 2010
B. Kundys, M. Viret, D. Colson (IRAMIS/SPEC) et D. O. Kundys
  Les chercheurs de l'IRAMIS/SPEC viennent de montrer qu'en plus du couplage entre polarisation électrique, magnétisme et distorsion du réseau cristallin, l'oxyde BiFeO3 présente un couplage entre éclairement et déformation.
Publications HAL

Dernières publications LNO


Toutes les publications LNO dans HAL-CEA

Thèses
1 sujet /SPEC/LNO

Dernière mise à jour :


 

Nouveaux films minces multiferroïques artificiels hybrides à base d’oxynitrures

SL-DRF-24-0474

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Antoine BARBIER

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Antoine BARBIER
CEA - DRF/IRAMIS/SPEC/LNO

01.69.08.39.23

Directeur de thèse :

Antoine BARBIER
CEA - DRF/IRAMIS/SPEC/LNO

01.69.08.39.23

Page perso : https://iramis.cea.fr/Pisp/137/antoine.barbier.html

Labo : https://iramis.cea.fr/spec/LNO/

Les oxydes dopés N et/ou les oxynitrures constituent une classe de composés nouveaux et en plein essor présentant une large gamme de propriétés utilisables, en particulier pour les nouvelles technologies de production d'énergie décarbonnée ainsi que pour des capteurs multifonctionnels. Dans ce domaine de recherche, la recherche de nouveaux matériaux est particulièrement souhaitable en raison des propriétés peu satisfaisantes des matériaux actuels. L'insertion d'azote dans le réseau cristallin d'un oxyde semiconducteur permet en principe de moduler sa structure électronique et ses propriétés de transport pour obtenir de nouvelles fonctionnalités. La production de films minces monocristallins correspondants, est un défi important. Dans ce travail de thèse, des films d’oxynitrures monocristallins seront élaborés par épitaxie par jets moléculaires assistée de plasma atomique. L’hétérostructure multiferroïque combinera deux couches enrichies en azote : une couche ferroélectrique de BaTiO3 dopée N ainsi qu'une ferrite fortement dopée ferrimagnétique dont les propriétés magnétiques pourront être modulées grâce au dopage N pour obtenir de nouveaux matériaux multiferroique artificiels plus satisfaisants pour les applications. Les structures résultantes seront étudiées quant à leurs caractéristiques ferroélectriques et magnétiques ainsi que leurs couplages magnétoélectriques en fonction du dopage N. Ces observations seront corrélées à une compréhension détaillée des structures cristallines et électroniques.

Le (la) candidate abordera l’ensemble des techniques d’ultra-vide, la croissance par épitaxie par jets moléculaires, des mesures ferroélectriques et de magnétométrie, ainsi qu’un large panel de méthodes de caractérisations basées sur l’exploitation des centres rayonnement synchrotron les plus avancés.
Stages
Films minces épitaxiés d’oxynitrures multiferroïques multifonctionnels
Epitaxial multifunctionnal multiferroic oxynitride thin films

Spécialité

Physique de la matière condensée

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

01/05/2024

Durée

5 mois

Poursuite possible en thèse

oui

Contact

BARBIER Antoine
+33 1 69 08 39 23

Résumé/Summary
L'objectif de ce stage est d’élaborer des couches minces epitaxiées multiferroïques d’oxynitrures ferrite/pérovskite (CoFe2(OxN1-x)4/N :BaTiO3 par épitaxie par jets moléculaires assistée de plasmas azote et oxygène atomiques : un nouveau matériau magnéto-électrique hybride. On procédera par dopage de films minces dont les conditions de croissance sont déjà maitrisées au laboratoire CEA/SPEC. On étudiera la structure cristalline ainsi que les propriétés ferroélectriques et magnétiques.
The objective of the internship is to grow epitaxial thin multiferroic ferrite/perovskite (CoFe2(OxN1-x)4/N:BaTiO3 oxynitride films by oxygen and nitrogen plasma assisted molecular beam epitaxy: a potentially new magnetoelectric material. We will proceed by nitrogen doping of oxide films for which the growth conditions are already mastered in the CEA/SPEC laboratory. The crystalline structure as well as the magnetic and ferroelectric properties will be studied.
Sujet détaillé/Full description
La transition énergétique et les technologies de communication modernes requièrent le développement de nouveaux matériaux dédiés, en particulier, à la production d’énergie propre et/ou permettant des économies d’énergie et de matériaux dans les systèmes électroniques. Dans ce cadre, les oxynitrures constituent une classe de matériaux pertinents. Parmi ceux-ci, les composés hybrides ferroélectriques et ferromagnétiques sont particulièrement bien adaptés pour réaliser des capteurs multifonctionnels. On s’attend à de nouvelles propriétés de transport induites par le dopage par l’azote. La réalisation de films minces monocristallins hybrides d’oxynitrures est cependant délicate et a été peu étudiée à ce jour.
Nous allons explorer la possibilité de moduler les propriétés de couches minces magnétoélectriques laminaires de ferrites de cobalt dopés N (CoFe2(OxN1-x)4, ferrimagnétique) déposées sur du titanate de Baryum dopé azote (N :BaTiO3, ferroélectrique) dont nous maitrisons déjà la croissance par l’adjonction d’un plasma azote durant la croissance. On étudiera l’influence du dopage azote sur les propriétés électroniques, magnétiques et ferroélectriques en fonction de l’épaisseur des couches et des paramètres de croissance. Des données de dichroïsme magnétiques, pour certaines situations, existent déjà et seront exploitées en détail.

Autres chercheurs potentiellement impliqués : Jean-Baptiste Moussy, Pâmella Vasconcelos (DES/ISAS/DRMP/S2CM/LM2T) et Sylvia Matzen (C2N)
Novel materials are required within the energy transition and modern communication technologies frameworks, in particular to produce clean energy and/or reduce electronic device consumption and overall materials usage. Within this context oxynitrides are a relevant class of materials. The magnetoelectric ones are very well suited to realize novel multifunctional sensors. Doping by charge carriers makes it possible to envisage new transport properties. The production of hybrid single crystalline thin oxynitride films is however challenging and has been little studied to date.
We will explore the possibility of modulating the properties of thin laminar oxide magnetoelectric films of N doped cobalt ferrite (CoFe2(OxN1-x)4, ferromagnetic) deposited on nitrogen doped barium titanate (N:BaTiO3, ferroelectric). Their growth conditions are already mastered and we will proceed by the addition of nitrogen plasma during growth. We will study the influence of the N doping on the electronic, magnetic and ferroelectric properties with respect to film thickness and growth conditions. Already existing magnetic dichroism data, for some situations, will be investigated in details.

Other researchers potentially involved : Jean-Baptiste Moussy et Pâmella Vasconcelos (DES/ISAS/DRMP/S2CM/LM2T), Sylvia Matzen (C2N)
Mots clés/Keywords
Oxynitrures, épitaxie par jets moléculaires, ferroélectricité, ferrimagnétisme, synchrotron, lithographie
Oxinitrides, molecular beam epitaxy, ferroélectricité, ferrimagnétisme, synchrotron, lithography
Compétences/Skills
Le (la) candidat(e) abordera les techniques d’ultra-vide associées à la croissance par épitaxie par jets moléculaires assistée par plasma d’oxygène et azote. On utilisera la diffraction des électrons rapides (RHEED), la spectroscopie d’électrons Auger (AES), la photoémission des niveaux de coeur (XPS), la microscopie en champ proche (PFM), les mesures magnétiques (VSM), la lithographie et les mesures ferroélectriques et la diffraction des rayons X. La modélisation fine de la structure électronique sera abordée pour l’interprétation des données de spectroscopie.
The candidate will address the UHV techniques associated with the growth by molecular beam epitaxy. The techniques that will be used are Reflexion High Energy Electron Diffraction (RHEED), Auger Electron Spectroscopy (AES), Photoemission core level spectroscopy (XPS), Piezo Force Microscopy (PFM), magnetic measurements (VSM), lithography and ferroelectric measurements and X-ray diffraction. Electronic structure modeling will be used for the interpretation of spectroscopic data.
Microscopies de rayons X avancées appliquées à des photoanodes à base d’hématite
Advanced X-ray microscopies applied to hematite-based photoanodes

Spécialité

Chimie-physique

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

26/04/2024

Durée

6 mois

Poursuite possible en thèse

oui

Contact

STANESCU Dana
+33 1 69 08 75 48

Résumé/Summary
Ce stage M2 est proposé dans le cadre d'un projet NanoSaclay visant à mesurer la quantité d’hydrogène produit par la photoélectrolyse de l'eau utilisant de photoanodes à base d'hématite et de vanadate de bismuth. La composition chimique et la structure électronique des photoanodes sera déterminées par STXM et XPEEM. Une nouvelle approche operando sera qualifiée pour des mesures STXM.
This internship is proposed in the framework of a NanoSaclay project aiming to measure the hydrogen produced by solar water splitting using hematite and bismuth vanadate based photoanodes. STXM and XPEEM are used to characterize the chemistry and chemical coordination of the photoanode materials. A new operando setup adapted to the STXM instrument will be qualified.
Sujet détaillé/Full description
L'hydrogène peut être produit par l’électrolyse de l'eau dans une cellule électrochimique, mais un apport d’énergie important est nécessaire pour franchir le couple redox de l'eau (1,23 V). Une nouvelle idée inspirée par la photosynthèse est la photoélectrolyse, où la lumière du soleil est utilisée pour réduire le potentiel nécessaire pour dissocier la molécule d’eau, en H2 et O2. La production d'hydrogène par photoélectrolyse est une idée très attractive car elle permet de stocker directement l'énergie solaire sous forme d’énergie chimique (liaison H-H) en utilisant une méthode propre.1,2 Dans la plupart des cas, la cellule électrochimique utilisée pour la photoélectrolyse emploie un électrolyte aqueux et contient trois électrodes : un semi-conducteur de type n comme photoanode, une cathode métallique conventionnelle et une électrode de référence.

Dans le cadre du projet « H2-re.SWSquant », financé par le LABEX NanoSaclay, nous recherchons un stagiaire M2 qui aura plusieurs missions. Tout d'abord, elle/il réalisera la croissance des photoanodes à base d'hématite (-Fe2O3) et de vanadate de bismuth (BiVO4), en utilisant des méthodes chimiques en milieux aqueux3–5. Deuxièmement, l’étudiant caractérisera le photocourant produit par ces photoanodes et quantifiera la quantité d’hydrogène réellement produite lors de la réaction de photoélectrolyse. Celle-ci sera corrélée avec la composition chimique et la structure électronique des photoanodes déterminées par microscopie de rayons X : en transmission (STXM) et par microscopie de photoélectrons (XPEEM) sur la ligne de lumière HERMES du synchrotron SOLEIL. Un nouveau dispositif permettant d’effectuer des mesures électrochimiques operando adapté au microscope STXM sera qualifié. Le stage se déroulera dans deux laboratoires : la croissance des photoanodes, les mesures de photocourant et d'hydrogène seront réalisées au CEA / IRAMIS / SPEC. Des expériences de microscopie (STXM, XPEEM, SEM) et de spectroscopie Raman seront réalisées au synchrotron SOLEIL. Le stage est financé par le LABEX NanoSaclay et le/la stagiaire sera rattaché administrativement au synchrotron SOLEIL. Le stage sera poursuivi par un travail de thèse dans le cadre du projet ANR OERKOP (https://iramis.cea.fr/spec/Phocea/Vie_des_labos/Ast/ast.php?t=projets&id_ast=3546).

Lien SOLEIL : https://www.synchrotron-soleil.fr/fr/emplois/stage-projet-nanosaclay

1. Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A. & Lewis, N. S. Chem. Rev. 110, 6446–6473 (2010).
2. Fujishima, A. & Honda, K. Nature 238, 37–38 (1972).
3. Stanescu, D., Piriyev, M., Villard, V., Mocuta, C., Besson, A., Ihiawakrim, D., Ersen, O., Leroy, J., Chiuzbaian, S. G., Hitchcock, A. P. & Stanescu, S. J. Mater. Chem. A 8, 20513–20530 (2020).
4. Packiaraj, R., Devendran, P., Asath Bahadur, S. & Nallamuthu, N. J. Mater. Sci. Mater. Electron. 29, 13265–13276 (2018).
5. Diaz-Morales, O., Ferrus-Suspedra, D. & Koper, M. T. M. Chem. Sci. 7, 2639–2645 (2016).
Hydrogen can be produced by water splitting in an electrolysis cell, but a significant energy input is necessary to overcome the water redox couple (1.23 V). A novel idea inspired by photosynthesis, is solar water splitting, where sunlight is used to reduce the voltage bias necessary to split H2O molecule in H2 and O2. Hydrogen production by solar water splitting is a very attractive idea because it allows to directly store solar energy in the H2 chemical bonds using a clean method.1,2 In most cases, the electrochemical cell used for solar water splitting is filled with an aqueous electrolyte and contains three electrodes: an n-type semiconductor as the photoanode, a conventional metallic cathode and a reference electrode.
In the framework of “H2-re.SWSquant” project, founded by LABEX NanoSaclay, we seek an M2 intern who will have several missions. First, she/he will grow hematite (-Fe2O3) and bismuth vanadate (BiVO4) based photoanodes, using chemical aqueous methods (hydrothermal growth and electrodeposition)3–5. Second, the student will characterize the photocurrent produced by these photoanodes and quantify the hydrogen gas actually produced during the solar water splitting reaction. This will be further correlated with the chemical composition and electronic structure of photoanodes determined by ex situ Scanning Transmission X-ray Microscopy (STXM) and X-ray PhotoEmission Electron Microscopy (XPEEM) at the HERMES beamline from SOLEIL Synchrotron. A new operando electrochemical setup dedicated to the STXM instrument will be qualified. The internship will take place at two laboratories: the photoanodes growth, photocurrent and hydrogen measurements will be realized at CEA / IRAMIS / SPEC. Microscopy (STXM, XPEEM, SEM) and Raman spectroscopy experiments will be realized at SOLEIL synchrotron. The internship is funded by LABEX NanoSaclay and the intern will be administratively attached to SOLEIL synchrotron. The internship will be followed by a PhD work proposed in the framework of the OERKOP ANR project.

(https://iramis.cea.fr/spec/Phocea/Vie_des_labos/Ast/ast.php?t=projets&id_ast=3546 ).

Link SOLEIL: https://www.synchrotron-soleil.fr/fr/emplois/stage-projet-nanosaclay

1. Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A. & Lewis, N. S. Chem. Rev. 110, 6446–6473 (2010).
2. Fujishima, A. & Honda, K. Nature 238, 37–38 (1972).
3. Stanescu, D., Piriyev, M., Villard, V., Mocuta, C., Besson, A., Ihiawakrim, D., Ersen, O., Leroy, J., Chiuzbaian, S. G., Hitchcock, A. P. & Stanescu, S. J. Mater. Chem. A 8, 20513–20530 (2020).
4. Packiaraj, R., Devendran, P., Asath Bahadur, S. & Nallamuthu, N. J. Mater. Sci. Mater. Electron. 29, 13265–13276 (2018).
5. Diaz-Morales, O., Ferrus-Suspedra, D. & Koper, M. T. M. Chem. Sci. 7, 2639–2645 (2016).
Mots clés/Keywords
Electrochimie; spectroscopie de rayons X; physique de la matière condensée; Cristallographie
Electrochemistry; X ray spectroscopy, condensed matter physics; crystallography
Compétences/Skills
STXM, XPEEM, SEM, spectroscopie Raman; croissance des photoanodes par voie chimique, photo-voltampérométrie, chromatographie de l'H2
STXM, XPEEM, SEM, Raman spectroscopy, photoanodes elaboration by chemical growth, photo-voltammetry, H2 chromatography
Logiciels
Python, Office
Images
Mesure de résistance électrique de parois magnétiques
Supraconductivité haut Tc  et  magnéto-résistance géante
Spin polarized transport in artificial structures. Iron and aluminium oxides epitaxial growth
Spin polarized transport in artificial structures. Iron and aluminium oxides epitaxial growth
Spin polarized transport in artificial structures. Iron and aluminium oxides epitaxial growth
AO-MBE Oxydes à SPEC / LNO
AO-MBE Oxydes à SPEC / LNO
Dépôts, croissance, films minces
Magnétométrie à échantillon vibrant / Vibrating sample magnetometry
Magnétométrie à échantillon vibrant / Vibrating sample magnetometry
Magnétométrie à échantillon vibrant / Vibrating sample magnetometry
Superconducting-magnetoresistive sensor for very low field measurements
Superconducting-magnetoresistive sensor for very low field measurements
De la rouille, du soleil et de l’eau  pour produire de l’hydrogène
De la rouille, du soleil et de l’eau  pour produire de l’hydrogène
De la rouille, du soleil et de l’eau  pour produire de l’hydrogène
Reduction of the damping induced by nonlinear effects
Reduction of the damping induced by nonlinear effects
Microscopie à résonance magnétique détectée mécaniquement.
Injection de spin dans une GMR
Injection de spin dans une GMR
Mesures de capacitance
Mesures de capacitance
Mesures de transport
Autour de la spintronique à l\'IRAMIS avec le laboratoire CNRS/THALES
Autour de la spintronique à l\'IRAMIS avec le laboratoire CNRS/THALES
Magnétométrie
Diffraction d\'électrons (LEED et RHEED)
Diffraction d\'électrons (LEED et RHEED)
Diffraction d\'électrons (LEED et RHEED)
Appareil de mesure des propriétés de magnéto-transport
Appareil de mesure des propriétés de magnéto-transport
Appareil de mesure des propriétés de magnéto-transport
Brevet :  Système de mesure d\'un signal de résonance magnétique à base d\'un capteur hybride supraconducteur-magnétorésistif
Brevet : Dispositif permettant de de détecter un champ magnétique / Device for sensing a magnetic field
Brevet : Procédé et dispositif d\'évaluation non destructrice de défauts dans un objet métallique / Method and device for non destructive evaluation of defects in a metallic object
Brevet : Procédé et appareil de mesures de champ magnétique au moyen d\'un capteur magnétorésistant
Brevet : Dispositif de protection permettant de protéger un circuit contre une attaque mécanique et électromagnétique
Brevet : Dispositif électrique blindé et son procédé de fabrication
Brevet : Procédé et système pour ajuster la sensibilité d\'un capteur magnétorésistif
Brevet : Oscillateur pour hyperfréquences accordé avec un mince film ferromagnétique
Brevet : Dispositif à ondes magnétostatiques basé sur des films minces métalliques, procédé de fabrication et application à des dispositfs de traitement de signaux hyperfréquences
Brevet : Procédé de fabrication d\'une couche d\'un matériau antiferromagnétique à structures magnétiques contrôlées. Process for fabricating a film of an antiferromagnetic material with controlled magnetic structures
Un oxyde aux propriétés vraiment multiples !
Un oxyde aux propriétés vraiment multiples !
La RMN à l \'IRAMIS
La RMN à l \'IRAMIS
La RMN à l \'IRAMIS
Le coup du sombrero
Le coup du sombrero
Le coup du sombrero
Magnétocardiographie par capteurs à GMR (magnétorésistance géante)
Magnétocardiographie par capteurs à GMR (magnétorésistance géante)
Magnétocardiographie par capteurs à GMR (magnétorésistance géante)
Brevet : Dispositif de stockage à tourbillon magnétique
Mise en évidence de la présence d’un couplage antiferromagnétique inhomogène à l’interface de deux matériaux oxyde ferromagnétiques
Mise en évidence de la présence d’un couplage antiferromagnétique inhomogène à l’interface de deux matériaux oxyde ferromagnétiques
Mise en évidence de la présence d’un couplage antiferromagnétique inhomogène à l’interface de deux matériaux oxyde ferromagnétiques
Mise en évidence de la présence d’un couplage antiferromagnétique inhomogène à l’interface de deux matériaux oxyde ferromagnétiques
Brevet : Capteur intègre de mesure de tension ou de courant à base de magnétorésistances
Mesurer le couplage dipolaire dynamique entre nano-disques magnétiques
Mesurer le couplage dipolaire dynamique entre nano-disques magnétiques
Mesurer le couplage dipolaire dynamique entre nano-disques magnétiques
Mesurer le couplage dipolaire dynamique entre nano-disques magnétiques
Un liquide de spin qui ne gèle pas à 0,07K : Tb2Ti2O7
Un liquide de spin qui ne gèle pas à 0,07K : Tb2Ti2O7
Epitaxial model oxide thin films dedicated to spintronics studied by synchrotron radiation techniques
Epitaxial model oxide thin films dedicated to spintronics studied by synchrotron radiation techniques
Transport Properties of the Co-doped BaFe2As2 Iron Pnictides
Transport Properties of the Co-doped BaFe2As2 Iron Pnictides
GMR-Superconducting mixed sensors
GMR-Superconducting mixed sensors
Frequency control of vortex core polarity in a magnetic nanodisk
Contrôle électronique de la relaxation dans un isolant magnétique
Contrôle électronique de la relaxation dans un isolant magnétique
RMN - IRM bas champ
RMN - IRM bas champ
RMN - IRM bas champ
RMN - IRM bas champ
Mesure magnétique locale de signaux biologiques
Pilotage d\'ondes de spin dans le YIG par un courant électrique
Pilotage d\'ondes de spin dans le YIG par un courant électrique
Pilotage d\'ondes de spin dans le YIG par un courant électrique
Pilotage d\'ondes de spin dans le YIG par un courant électrique
Projet DIM OXYMORE : CALPHOSPIN
Croissance par ablation laser pulsée femto-seconde d’hétérostructures à base d’oxydes pour la SPINtronique (CALPHOSPIN)
Croissance par ablation laser pulsée femto-seconde d’hétérostructures à base d’oxydes pour la SPINtronique (CALPHOSPIN)
Croissance par ablation laser pulsée femto-seconde d’hétérostructures à base d’oxydes pour la SPINtronique (CALPHOSPIN)
Dispositif d’effet Kerr sous ultravide (SMOKE : Surface Magneto-Optic Kerr Effect)
Dispositif d’effet Kerr sous ultravide (SMOKE : Surface Magneto-Optic Kerr Effect)
Dispositif d’effet Kerr sous ultravide (SMOKE : Surface Magneto-Optic Kerr Effect)
Dispositif d’effet Kerr sous ultravide (SMOKE : Surface Magneto-Optic Kerr Effect)
Banc multiferroïque
Un champ électrique interne pour booster la production d’hydrogène lors de la photoélectrolyse de l’eau
Un champ électrique interne pour booster la production d’hydrogène lors de la photoélectrolyse de l’eau
Banc de mesure de la photo-électrolyse de l’eau / spectroscopie d’impédance
Magnetrodes
Magnetrodes
A frequency controlled memory based on magnetic vortices
A frequency controlled memory based on magnetic vortices
Strong spin-orbit coupling materials
Laboratoire Nano-Magnétisme et Oxydes (LNO)
High-Temperature Superconductors
Multiferroic Oxides
Les capteurs GMR, une excellente alternative pour la détection en spectroscopie RMN locale
Bistabilité magnétique de molécules individuelles sur surface ferrimagnétique
Brevet: Elément de magnétorésistance à vanne de spin à réponse améliorée aux champs magnétiques
Brevet : Elément magnétorésistif ayant une meilleure réponse aux champs magnétiques
Spectrométrie de photoélectrons X  (XPS)
Spectrométrie de photoélectrons X  (XPS)
Brevet : Procédé et système de spectroscopie par résonance magnétique nucléaire locale
Brevet : Capteurs de champ magnétique et procédés utilisant un mélange dans un élément à magnétorésistance
Technique d\'imagerie SHG-laser femtoseconde pour observer un ordre magnétique très discret
Technique d\'imagerie SHG-laser femtoseconde pour observer un ordre magnétique très discret
Technique d\'imagerie SHG-laser femtoseconde pour observer un ordre magnétique très discret
Cartographier dans l’espace réel l’ordre antiferromagnétique aux échelles nanométriques
Cartographier dans l’espace réel l’ordre antiferromagnétique aux échelles nanométriques
Brevet : Système de spectroscopie RMN / NMR spectroscopy system
Optimized transition metal-oxide photo-anodes for renewable energy harvesting
Optimized transition metal-oxide photo-anodes for renewable energy harvesting
In vivo local recording of the magnetic signature of neurons
Optimisation d\'un laboratoire sur puce à base de capteurs GMR pour du diagnostic précoce et rapide
Synthesis and physico-chemical characterization of solid state materials @SPEC/LNO
Synthesis and physico-chemical characterization of solid state materials @SPEC/LNO
Synthesis and physico-chemical characterization of solid state materials @SPEC/LNO
Synthesis and physico-chemical characterization of solid state materials @SPEC/LNO
Aqueous chemical growth of nanostructured oxide films
Oxide nanorods for solar water splitting obtained by aqueous chemical growth
Oxide nanorods for solar water splitting obtained by aqueous chemical growth
Nonlinear properties of pure spin conductors
Nonlinear properties of pure spin conductors
Dissipation Planckienne dans les supraconducteurs à haute température critique
Dissipation Planckienne dans les supraconducteurs à haute température critique
Dissipation Planckienne dans les supraconducteurs à haute température critique
Des ordres quantiques détricotés mettent la supraconductivité à haute température critique dans tous ses états
Des ordres quantiques détricotés mettent la supraconductivité à haute température critique dans tous ses états
Des ordres quantiques détricotés mettent la supraconductivité à haute température critique dans tous ses états
Brevet : Système et procédé de suppression du bruit basse fréquence de capteurs magnéto-résistif
Biopuce à base de capteurs GMR pour le diagnostic biologique précoce à haute sensibilité
Structures magnétiques chirales aux parois de domaines antiferromagnétiques
Nano-impression électrique et manipulation d’hétérostructures oxydes ferroélectriques par microscopie à force piézoélectrique
Brevet : Dispositif et procédé de détection magnétique d\'objets biologiques microscopiques
Brevet : Ensemble de magnétorésistance comprenant un élément TMR disposé sur ou sous un élément GMR
Brevet : Capteur de courant à multiples plages de sensibilité
Brevet : Système de transfert de données isolé
Projet ANR OPTYMAL : Operando and in-situ specTroscopies for renewable energY MAteriaLs
Projet ANR OPTYMAL : Operando and in-situ specTroscopies for renewable energY MAteriaLs
Projet ANR MULTINANO
Des capteurs magnétiques secoués mais moins bruyants
Brevet : Empilement magnétorésistif sans champ rayonné, capteur et système de cartographie magnétique comprenant un tel empilement
Brevet : Réduction d\'erreur d\'angle dans un capteur d\'angle de champ magnétique
Des capteurs ultra-sensibles pour mesurer des courants bien singuliers dans le graphène
Preuve de concept d’une biopuce \
Fet-Open TSAR : Solitons topologiques dans les antiferroïques / Topological Solitons in AntifeRroics
Fet-Open TSAR : Solitons topologiques dans les antiferroïques / Topological Solitons in AntifeRroics
Projet ANR CARAMEL
Les supraconducteurs à haute température critique (HTSC)
Les supraconducteurs à haute température critique (HTSC)
Nanomagnétisme et oxydes : spintronique, matériaux multiferroïques et nouveaux capteurs magnétiques
Surfaces, couches minces et leurs propriétés multiferroïques et catalytiques
Système et procédé de suppression du bruit magnétique basse fréquence de capteurs magnéto-résistifs
Projet ANR OERKOP
Projet ANR OERKOP
Nouvel équipement SPEC-LLB pour les études en physique du solide : four à image pour obtenir des monocristaux de haute qualité
Des matériaux simples et abondants pour une énergie future propre et efficace

 

Retour en haut