Dans ce manuscrit nous nous intéressons au phénomène de convection forcée par une source radiative de chaleur. Les forçages radiatifs sont source de mouvements convectifs pour nombre d’écoulements naturels : dans les étoiles, les supernovae, les lacs gelés, le manteau terrestre. La source de chaleur y est partiellement volumique, c’est-à-dire que la chaleur est en partie injectée directement dans l’écoulement turbulent, et non par conduction thermique entre fluide et paroi solide. Nous nous intéressons particulièrement à une source de chaleur exponentielle avec la hauteur dans le fluide, que nous étudions d’abord du point de vue numérique, puis dans le cadre d’une expérience de laboratoire. Nous observons numériquement et expérimentalement que l’efficacité de la convection thermique (en termes de flux de chaleur adimensionné) dépend fortement de l’extension spatiale de la source de chaleur, avec une transition entre deux régimes distincts. Lorsque la chaleur est injectée sur une taille typique plus petite que les couches limites du système, nous trouvons une situation exactement analogue à la convection de Rayleigh-Bénard; la chaleur doit diffuser à travers les couches limites, ce qui restreint le processus de transfert de chaleur. Lorsque la chaleur est injectée sur une taille typique grande devant les couches limites, cette limitation n’est plus. On observe un transfert de chaleur beaucoup plus efficace, prédit dans les années 60 par Spiegel et Kraichnan et parfois qualifié de “régime ultime” de la convection turbulente.
Mots-clés : Convection thermique, Turbulence, Dynamique des fluides astrophyisique.
Convection under radiative forcing : from the Rayleigh-Bénard regime to the ultimate regime
In this manuscript, we study convection driven by radiative heating. Radiative heating occurs in natural flows inside stars, supernovae, frozen lakes, and the Earth’s mantle. The heat source is partially volumic, which means that heat is directly injected in the turbulent flow itself, in contrast with the more classical Rayleigh-Bénard convection, where heat is injected through thermal conduction between the fluid and a solid plate. We focus on the case where the heat source decreases exponentially with the height inside the fluid. We study this problem numerically in the first part of the manuscript, before describing an experimental setup that realizes this type of heat source in the second part. We observe numerically and experimentally that the efficiency of thermal convection (in terms of dimensionless heat flux) depends strongly on the spatial extension of the heat source, with a clear-cut transition between two regimes. When the heat is injected on a typical height smaller than the boundary layer thickness, we recover the classical Rayleigh-Bénard régime of convection; the injected heat must diffuse through the boundary layers, which limits the overall heat transfer efficiency. When the heat is injected on a typical length larger than the boundary layer thickness, this limitation does not apply anymore, and we observe a much more efficient regime of heat transfer, predicted in the 60s by Spiegel and Kraichnan, and sometimes referred to as the « ultimate » regime of thermal convection.
Keywords: Thermal convection, Turbulence, Astrophysical fluid dynamics.
SPEC/SPHYNX