Service de Physique de l'Etat Condensé

Les sujets de thèses

4 sujets IRAMIS//SPEC

Dernière mise à jour : 14-11-2018


• Interactions rayonnement-matière

• Physique du solide, surfaces et interfaces

 

Physique et applications d'électrons chauds d'origine plasmonique

SL-DRF-19-0347

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire d'Electronique et nanoPhotonique Organique (LEPO)

Saclay

Contact :

Ludovic DOUILLARD

Date souhaitée pour le début de la thèse : 01-10-2019

Contact :

Ludovic DOUILLARD

CEA - DRF/IRAMIS/SPEC/LEPO

01 69 08 36 26

Directeur de thèse :

Ludovic DOUILLARD

CEA - DRF/IRAMIS/SPEC/LEPO

01 69 08 36 26

Page perso : http://iramis.cea.fr/Pisp/ludovic.douillard/

Labo : http://iramis.cea.fr/spec/LEPO/

A petite échelle, l’interaction de la lumière avec un objet métallique se traduit par l’occurrence de résonances au sein du spectre d’absorption, les résonances plasmon. Ces résonances correspondent aux processus d’oscillations collectives des électrons de conduction du métal [Mie 1908] et constituent un domaine de recherche à part entière baptisé Plasmonique. Au-delà des aspects de manipulation du champ proche optique, un objet métallique à résonance plasmon constitue une source d’électrons chauds, dont les propriétés électroniques atypiques peuvent être mises à profit pour la conduite de réaction de chimie locale.



Ce travail a pour objectif d’étudier la physique amont de la production des électrons chauds par un objet métallique de petite taille en lien avec des applications, notamment médicales telles que la thérapie photodynamique ciblée. Il s’agit d’un travail à dominante expérimentale en collaboration étroite avec un partenariat pertinent de physiciens, chimistes, biologistes et oncologues (CEA, CentraleSupélec, ENS Paris Saclay, Paris Hôpital Saint-Louis). Il bénéficiera de l’expérience acquise par le groupe CEA IRAMIS SPEC en microscopie LEEM / PEEM (Low Energy Electron / PhotoEmission Electron Microscopy), dont le principe repose sur le suivi de la distribution des photoélectrons émis en réponse à une résonance plasmon [Douillard 2017, 2012, 2011] et constitue par la même une technique de choix pour ce type d’étude.



Les objectifs visent à répondre à d’importantes questions fondamentales relatives à l’émission d’électrons chauds par une particule métallique sous excitation optique multiphotonique. Il s’agit notamment de déterminer la dynamique d’émission des porteurs de charges (expérience pompe-sonde) et leurs distributions tant spatiale à l’échelle du nano-objet qu’énergétique au travers de spectres en énergie cinétique d’objets individuels. L’objectif ultime s’inscrit dans le cadre d’un projet d’oncologie médicale (cancer du sein), dont le but est l’optimisation de thérapies en cours de développement, notamment photothermiques et photodynamiques.





Mots clefs : Electrons chauds, plasmon, laser, photoémission, PEEM, LEEM



[Mie 1908] G. Mie, Ann. Phys. (Leipzig) 25 (1908) 377

[Douillard 2012, 11] S. Mitiche et al. J. of Phys. Chem. C 121 (2017) 4517–4523, C. Awada, et al. J. of Phys. Chem. C 16 (2012) 14591, L. Douillard, F. Charra. J. of Phys. D: Applied Physics 44 (2011) 464002, C. Hrelescu, et al. Nano Lett. 11 (2011) 402–407

Compréhension de l’évolution de la ténacité des zones de démixtion avec des simulations de dynamique moléculaire

SL-DRF-19-0033

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Cindy ROUNTREE

Date souhaitée pour le début de la thèse : 01-10-2019

Contact :

Cindy ROUNTREE

CEA - DRF/IRAMIS/SPEC/SPHYNX

+33 1 69 08 26 55

Directeur de thèse :

Cindy ROUNTREE

CEA - DRF/IRAMIS/SPEC/SPHYNX

+33 1 69 08 26 55

Page perso : http://iramis.cea.fr/Pisp/cindy.rountree/

Labo : http://iramis.cea.fr/spec/SPHYNX/

Voir aussi : http://iramis.cea.fr/spec/index.php

Ce projet de recherche fondamentale et appliquée est motivé par la nécessité de prédire, contrôler et d’améliorer la durabilité mécanique des verres sur le long terme. Les verres d’oxydes sont utilisés pour de nombreuses structures (panneaux de protection, satellites, cellules photovoltaïques…) soumises à d’amener un endommagement générant une apparition et une propagation lente de fissure (Corrosion Sous Contrainte, CSC).



Des études récentes [1-3] ont dévoilé une méthode très innovante pour améliorer la réponse en corrosion sous contrainte qui consiste à irradier électroniquement le matériau. Cependant, l’irradiation par électrons engendre des zones de démixtion. La question qu’on se propose de résoudre ici est de vérifier si l’apparition de zone de démixtion (APS, Amorphous Phase Separation) est bien responsable de l’amélioration comportement en corrosion sous contrainte, puis de l’étudier pour ensuite augmenter la tenue en service des verres.



Le doctorat devra étudier les propriétés physiques, mécaniques et rupture des verres avec APS avec des simulations de dynamique moléculaire. L'objectif principal étant d'étudier les propriétés physiques et comment il change les propriétés de rupture dans des verres avec APS. Cela fournira des informations sur le comportement de la fissure en fonction des différentes phases présentes dans les verres avec APS.



Cette méthode a déjà été utilisée dans nos équipes de recherche pour étudier la fracture dynamique en fonction de la vitesse de propagation de la fissure dans de la silice pure (SiO2). L’utilisation de ces DM pour l’étude du comportement en CSC de verres SBN APS aidera à comprendre comment la structure physique des verres modifie les propriétés mécaniques. Le doctorant sera donc amené à utiliser différents systèmes de HPC (in-house et les supercalculateurs). Le but étant de corréler les mécanismes de fissuration des verres avec d’autres propriétés macroscopiques, mesoscopiques, et microscopiques.



Sur le plan logistique, le candidat sera encadré par C.L. Rountree au CEA. En conclusion, le thème de ce projet est la compréhension de la source des changements dans la propriété macroscopique, et en particulier comment contrôler les propriétés de fissuration en CSC en faisant varier la structure des verres via l’apparition de zone de démixtion (APS).

Contrôle électromécanique de parois de domaines topologiques en surface

SL-DRF-19-0384

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire d'Etude des NanoStructures et Imagerie de Surface (LENSIS)

Saclay

Contact :

Nicholas BARRETT

Date souhaitée pour le début de la thèse : 01-10-2019

Contact :

Nicholas BARRETT

CEA - DRF/IRAMIS/SPEC/LENSIS

0169083272

Directeur de thèse :

Nicholas BARRETT

CEA - DRF/IRAMIS/SPEC/LENSIS

0169083272

Page perso : http://iramis.cea.fr/Pisp/87/nick.barrett.html

Labo : http://iramis.cea.fr/spec/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=2075

Dans les matériaux ferroélectriques ou ferroélastiques, des domaines se forment pour minimiser les contributions électrostatiques et mécaniques à l’énergie libre du système, séparés par des parois de domaines (DWs). DWs rompt la symétrie et démontre des propriétés «étonnantes et très différentes par rapport aux matériaux de volume, dont la conductivité, la supraconductivité et la polarité. En conséquence, elles pourraient constituer un nouveau paradigme pour la nanoélectronique dans lequel la paroi devient l’élément actif du dispositif. Une structure polaire ou conductrice bidimensionnelle et commutable dans un milieu diélectrique ouvrirait une voie vers le stockage d’information à très haute densité et à basse consommation d’énergie. La thèse s’adressera aux parois entre domaines ferroélastiques et ferroélectriques.

Des monocristaux massifs ferroélectriques (BaTiO3), ferroélastiques (CaTiO3) et des films épitaxie ales (BaTiO3, PbTiO3 et CaTiO3) seront étudiés. La microscopie à électrons à basse énergie ou en photoémission sera utilisée pour imager la topographie électrique, la chimie locale et la structure électronique des parois de domaines. Des dispositifs pour l’imagerie des parois en fonction du stress mécanique ou champ électrique seront employés pour des expériences in operando. En collaboration avec le Prof. Ekhard Salje de l’université de Cambridge, un modèle mécanique sera développé pour simuler l’émergence de polarité à partir des gradients de contrainte.

Détection d'objets biologiques submicroniques à l'aide d'un laboratoire sur puce à base de capteurs à Magnétorésistance Géante

SL-DRF-19-0361

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Guenaelle Jasmin-Lebras

Stéphanie SIMON

Date souhaitée pour le début de la thèse : 01-02-2018

Contact :

Guenaelle Jasmin-Lebras

CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 65 35

Directeur de thèse :

Stéphanie SIMON

CEA - DRF/Joliot/DMTS/SPI/LERI

01 69 08 77 04

Page perso : http://iramis.cea.fr/Pisp/guenaelle.jasmin-lebras/

Labo : http://iramis.cea.fr/spec/LNO/

Le développement de techniques de diagnostic précoce est un vrai défi dans le domaine médical ou de la défense. Il s’agit d’obtenir un outil capable de détecter rapidement, de façon simple, sensible et spécifique, différents objets biologiques rares en réponse à un besoin d’urgence de diagnostic clinique et/ou de biosécurité. L’approche proposée par le LERI et le LNO est en cela très innovante. Elle est basée sur la combinaison d’un marquage spécifique des anticorps développés au LERI avec des nanoparticules magnétiques et leur détection dynamique avec des capteurs magnétiques très sensibles à base d’électronique de spin. Ce sujet fait actuellement l’objet d’une thèse, qui a permis d’apporter la preuve de concept de la spécificité du test en étudiant un modèle de lignée de cellules de myélome murin. Un nouveau dispositif plus performant, avec des capteurs de part et d’autre du canal microfluidique, a été développé et fabriqué. Au cours de cette nouvelle thèse qui sera réalisée en collaboration avec le LERI, il s’agira de montrer que ce laboratoire sur puce est capable d’atteindre des performances suffisantes pour détecter des objets biologiques de plus petite taille, les bactéries. Le LERI dispose d’ores et déjà d’anticorps dirigés contre différentes bactéries (spores de bactéries gram(+) de Bacillus thuringiensis, bactérie gram(-) Salmonella Typhimurium) qui serviront de modèles d’étude de bactéries de la menace biologique. Au LERI, l'étudiant fonctionnalisera des particules magnétiques avec divers anticorps dirigés contre ces bactéries.

Au LNO, l’étudiant aura pour objectif de développer des laboratoires sur puce et évaluer leurs performances et robustesses. Il devra apprendre à les fabriquer avec les différentes techniques disponibles dans le service (salle blanche, découpe laser, machines de dépôts). Il devra concevoir un dispositif blindé transportable contre le bruit magnétique afin d’effectuer les mesures au LERI dans un environnement de haute sécurité microbiologique de niveau 2. Il adaptera les programmes de simulation et d’acquisition à la détection simultanée d’une bactérie par deux capteurs

 

Retour en haut