Service de Physique de l'Etat Condensé

Les sujets de thèses

Dernière mise à jour : 15-12-2017

15 sujets IRAMIS/SPEC

• Matière molle et fluides complexes

• Physique du solide, surfaces et interfaces

• Physique mésoscopique

 

Dissipation, cascades et singularités en turbulence

SL-DRF-18-0272

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Bérengère DUBRULLE

Date souhaitée pour le début de la thèse : 01-10-2017

Contact :

Bérengère DUBRULLE

CNRS - DRF/IRAMIS/SPEC/SPHYNX

0169087247

Directeur de thèse :

Bérengère DUBRULLE

CNRS - DRF/IRAMIS/SPEC/SPHYNX

0169087247

Page perso : http://iramis.cea.fr/Pisp/berengere.dubrulle/index.html

Labo : http://iramis.cea.fr/spec/sphynx/

La turbulence est un état atteint par la majeure partie des fluides dans des conditions “extrêmes” -fortes vitesses ou températures, grande taille du système-. Elle se manifeste dans de nombreux domaines industriels (turbines), aéronautiques (avions, fusées), géophysiques (atmosphère, océan) ou astrophysiques (étoiles, galaxies). Comprendre les phénomènes de turbulence constitue donc un enjeu scientifique, technologique et économique important. Soumis à une agitation mécanique, un fluide visqueux convertit le travail appliqué en chaleur via un processus complexe: son écoulement se structure en mouvements tourbillonnaires qui se ramifient sur plusieurs échelles allant de la taille du système (océan, lac, récipient,…) à l'échelle la plus fine, fonction de la viscosité. L’énergie injectée dans le fluide est finalement dissipée par effet de viscosité. Depuis près de 80 ans, on décrit ce processus par un modèle de cascade auto-similaire, du à Kolmogorov. Ce modèle sert de base à presque tous les modèles actuels de turbulence, et permet de reproduire extrêmement bien la majeure partie des grandes échelles des écoulements turbulents. Cependant, ce modèle devient de plus en plus mauvais au fur et à mesure que l'on descend vers les petites échelles, et ne permet pas de comprendre le comportement très intermittent de la dissipation d'énergie. Cela limite considérablement la modélisation des processus impliquant la turbulence à petite échelle, comme la combustion (problème pour simuler les moteurs) ou la condensation de gouttes (problème pour simuler la pluie en météo ou en climat).



Le but de la thèse est de tester une nouvelle description de la cascade d'énergie, basée sur l'hypothèse que la turbulence contient des singularités dans la limite de la viscosité tendant vers zéro. La quête des singularités dans les équations d’Euler ou de Navier-stokes représente un problème bien connu (cf. AMS Millenium Clay Prize), mais les récentes avancées, tant au niveau numérique qu’expérimental, remettent ce problème de nouveau d’actualité. En particulier, notre groupe a récemment mis en évidence, dans un écoulement turbulent de laboratoire, l'existence d'événements intenses de dissipation d'énergie non-visqueuse qui pourraient être associés aux singularités recherchées par les mathématiciens (Saw et al, Nature Communication 7, 12466 (2016)). Ces évènements ne sont pas décrits par le modèle de Kolmogorov, et pourraient servir de base à de nouvelles modélisations plus fidèles à petite échelle.



Nous proposons dans cette thèse une étude détaillée des processus de cascade et de dissipation d'énergie en utilisant le code SFEMaNS, qui sera testé par comparaisons avec les mesures expérimentales. Ce code utilise des éléments finis et une décomposition spectrale ainsi que des méthodes avancées de pénalisation, pour reproduire fidèlement l'expérience de laboratoire utilisée au SPEC.

Aspects physiques de la rupture des verres en corrosion sous contrainte

SL-DRF-18-0227

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Cindy ROUNTREE

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Cindy ROUNTREE

CEA - DRF/IRAMIS/SPEC/SPHYNX

+33 1 69 08 26 55

Directeur de thèse :

Cindy ROUNTREE

CEA - DRF/IRAMIS/SPEC/SPHYNX

+33 1 69 08 26 55

Page perso : http://iramis.cea.fr/Pisp/cindy.rountree/

Labo : http://iramis.cea.fr/spec/SPHYNX/

Voir aussi : http://iramis.cea.fr/spec/

Pour les 3 années de thèse, un financement par l'ANR a été obtenu en 2017. Une décision sur les candidatures reçues pourra être donnée par la laboratoire au début du printemps 2018.



Ce projet de recherche fondamentale et appliquée est motivé par la nécessité de prédire, contrôler et d’améliorer la durabilité mécanique des verres sur le long terme. Les verres d’oxydes sont utilisés pour de nombreuses structures (panneaux de protection, satellites, cellules photovoltaïques…) soumises à d’amener un endommagement générant une apparition et une propagation lente de fissure (Corrosion Sous Contrainte, CSC).



Des études récentes [1-3] ont dévoilé une méthode très innovante pour améliorer la réponse en corrosion sous contrainte qui consiste à irradier électroniquement le matériau. Cependant, l’irradiation par électrons engendre des zones de démixtion. La question qu’on se propose de résoudre ici est de vérifier si l’apparition de zone de démixtion (APS, Amorphous Phase Separation) est bien responsable de l’amélioration comportement en corrosion sous contrainte, puis de l’étudier pour ensuite augmenter la tenue en service des verres.

Le doctorat devra étudier les propriétés physiques, mécaniques et Corrosion Sous Contrainte (CSC) des verres avec APS. L'objectif principal étant d'étudier in situ la propagation de la fissure par corrosion sous contrainte et l'analyser des surfaces de fracture dans des verres avec APS. Cela fournira des informations sur le comportement de la fissure en régime de CSC en fonction des différentes phases présentes dans les verres avec APS.



Cette méthode a déjà été utilisée dans nos équipes de recherche pour étudier la surface de fracture en fonction de la vitesse de propagation de la fissure dans de la silice pure (SiO2) et dans plusieurs échantillons SBN ("Si" "O" _"2" "-" "B" _"2" "O" _"3" "-N" "a" _"2" "O" ). L’utilisation de ces techniques pour l’étude du comportement en CSC de verres SBN APS aidera à comprendre comment la structure physique des verres modifie les propriétés mécaniques. Le doctorant sera donc amené à utiliser différents techniques expérimentaux tels que la spectroscopie Raman, la spectroscopie RMN, l'absorption des rayons X et de collaborer avec d’autres équipe de recherche : CEA, DEN et Université de Rennes 1. Le but étant de corréler les mécanismes de fissuration des verres avec d’autres propriétés macroscopiques et microscopiques.



Sur le plan logistique, le candidat sera co-encadré par C.L. Rountree au CEA et F. Célarié de l'Université de Rennes 1. Des essais de synthèse de verre et des essais préliminaires auront lieu à l'Université de Rennes 1 puis les tests de fissuration en CSC seront effectués au CEA. En conclusion, le thème de ce projet est la compréhension de la source des changements dans la propriété macroscopique, et en particulier comment contrôler les propriétés de fissuration en CSC en faisant varier la structure des verres via l’apparition de zone de démixtion (APS).



Publications

1) “SiO2-Na2O-B2O3 density: A comparison of experiments, simulations, and theory.”

M. Barlet, A. Kerrache, J-M Delaye, and C. L. Rountree, Journal of Non-Crystalline Solids. 382, 32, (2013)

2) "Hardness and Toughness of Sodium Borosilicate Glasses via Vicker's indentations”

M. Barlet, J-M. Delaye, T. Charpentier, M. Gennisson, D. Bonamy, T. Rouxel, C.L. Rountree

Journal of Non-Crystalline Solids. 417–418:66-69 (June 2015).

DOI:10.1016/j.jnoncrysol.2015.02.005

3) “From network depolymerization to stress corrosion cracking in sodium-borosilicate glasses: Effect of the chemical composition.”

M. Barlet, J.-M. Delaye, B. Boizot, D. Bonamy, R. Caraballo, S. Peuget and C. L. Rountree

Journal of Non-Crystalline Solids. 450:174-184 (15 October 2016).

4) “Role of evaporation rate on the particle organization and crack patterns obtained by drying a colloidal layer”

K. Piroird, V. Lazarus, G. Gauthier, A. Lesaine, D. Bonamy and C. L. Rountree

Europhysics Letters, 113:38002 (February 2016).

Auto-assemblages supramoléculaires multi-composants modulables et magnétiques pour la spintronique

SL-DRF-18-0337

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire d'Electronique et nanoPhotonique Organique (LEPO)

Saclay

Contact :

Fabien SILLY

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Fabien SILLY

CEA - DRF/IRAMIS/SPEC/LEPO

01 69 08 80 19

Directeur de thèse :

Fabien SILLY

CEA - DRF/IRAMIS/SPEC/LEPO

01 69 08 80 19

Page perso : http://iramis.cea.fr/Pisp/fabien.silly/index.html

Labo : http://iramis.cea.fr/spec/LEPO/

L'habileté des molécules à s'auto-assembler sur des surfaces peut être exploitée pour développer des composants a l'échelle nanométrique. L’objectif de cette thèse est non seulement de former, mais aussi, de commander l'agencement de larges architectures moléculaires multi-composants pour contrôler l’agencement de nanoobjets magnétiques. Ces architectures magnétiques seront caractérisées par microscopie à effet tunnel sous ultra vide (STM-UHV), spectroscopie polarisée en spin (SP-STS) et rayonnement synchrotron. Ces nanostructures sont des systèmes modèles pour étudier les phénomènes magnétiques originaux apparaissant aux échelles nanométriques.

Courants à haute polarisation de spin dans des jonctions magnétiques à base des molécules organiques

SL-DRF-18-0443

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Groupe Mésocopie Modélisation et Thermoélectricité (GMT)

Saclay

Contact :

Alexander SMOGUNOV

Date souhaitée pour le début de la thèse : 01-05-2018

Contact :

Alexander SMOGUNOV

CEA - DRF/IRAMIS/SPEC/GMT

0169083032

Directeur de thèse :

Alexander SMOGUNOV

CEA - DRF/IRAMIS/SPEC/GMT

0169083032

Page perso : http://iramis.cea.fr/Pisp/alexander.smogunov/

Labo : http://iramis.cea.fr/spec/GMT/

Nous proposons une thèse dédiée à l'étude théorique du transport électronique polarisé en spin dans des jonctions constituées de molécules organiques connectées à deux électrodes ferromagnétiques – le sujet est d’un très grand intérêt dans le domaine de la spintronique organique/moléculaire [1]. Un accent particulier sera mis sur la possibilité d'optimiser et de piloter le degré de polarisation de spin du courant électrique et des propriétés de magnétorésistance – des concepts très importants en spintronique – par un choix judicieux de molécules ou par différents facteurs externes tels que la température (du fait de l'interaction entre électrons et vibrations moléculaires), le champ électrique (grille électrostatique) ou la tension mécanique sur la molécule exercée par des électrodes. L’idée principale, est d’exploiter le principe de symétrie des orbitales moléculaires – argument que nous avons avancé récemment [2] – qui peut permettre de filtrer le spin du courant électrique de manière efficace. Des méthodes ab initio basées sur la DFT (Théorie de la Fonctionnelle de la Densité) implémentée dans le code Quantum ESPRESSO [3], en combinaison avec des calculs de transport modèles, basés sur le formalisme de Keldysh, seront utilisés au cours de ce projet. De nouvelles fonctionnalités comme, par exemple, le couplage électron-phonon sur la molécule ou le transport thermique, seront implémentés dans les codes QE et le transport électronique.



[1] A. R. Rocha et al., Towards molecular spintronics, Nature Mater. 4, 335(2005); S. Sanvito,

Molecular spintronics, Chem. Soc. Rev. 40, 3336 (2011); V. Alek Dediu et al., Spin routes in

organic semiconductors, Nature Mater. 8, 707 (2009);

[2] A. Smogunov and Y. J. Dappe, Symmetry-Derived Half-Metallicity in Atomic and Molecular

Junctions, Nano Lett. 15, 3552 (2015);

[3] P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for

quantum simulations of materials, Phys.: Condens. Matter 21, 395502 (2009).

Etude in operando de microstructures multiferroïques encapsulées de type ferrite - pérovskite

SL-DRF-18-0351

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Antoine BARBIER

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Antoine BARBIER

CEA - DRF/IRAMIS/SPEC/LNO

01.69.08.39.23

Directeur de thèse :

Antoine BARBIER

CEA - DRF/IRAMIS/SPEC/LNO

01.69.08.39.23

Page perso : http://iramis.cea.fr/Pisp/137/antoine.barbier.html

Labo : http://iramis.cea.fr/spec/LNO/

Voir aussi : http://iramis.cea.fr/spec/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=2545&id_unit=9&id_groupe=179

Les oxydes ferroélectriques de structure pérovskite couplés à des ferrites magnétiques appartiennent à la nouvelle classe de matériaux multiferroïques artificiels. Ils suscitent un vif intérêt dans le domaine des applications liées à la spintronique et à la conversion de l’énergie. La nature du couplage, en particulier en condition d’opération sous stimulation d’un champ externe, reste largement inexplorée. On s’attachera à déterminer les conditions d’élaboration d’inclusions monocristallines de ferrites dans un film pérovskite par épitaxie par jets moléculaires assistée par plasma d’oxygène atomique au CEA ou par traitement thermique. Le comportement de ces inclusions sera déterminé en fonctionnement et en utilisant des méthodes de caractérisations basées sur l’exploitation des centres rayonnement synchrotron les plus avancés et plus particulièrement la spectromicroscopie, l’absorption, la diffraction des rayons X et le dichroïsme magnétique sur les lignes de lumières HERMES, DIFFABS et DEIMOS du synchrotron SOLEIL dans une approche collaborative. Le (la) candidate abordera l’ensemble des techniques d’ultra-vide, la croissance par épitaxie par jets moléculaires, des mesures de magnétométrie ainsi qu’un large panel de méthodes de caractérisations basées sur l’exploitation des centres rayonnement synchrotron les plus avancés.

Etude théorique de l’anisotropie magnétique de systèmes hybrides pour la spintronique moléculaire

SL-DRF-18-0045

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Groupe Mésocopie Modélisation et Thermoélectricité (GMT)

Saclay

Contact :

Cyrille BARRETEAU

Date souhaitée pour le début de la thèse : 01-12-2017

Contact :

Cyrille BARRETEAU

CEA - DRF/IRAMIS/SPEC/GMT

+33(0)1 69 08 38 56

Directeur de thèse :

Cyrille BARRETEAU

CEA - DRF/IRAMIS/SPEC/GMT

+33(0)1 69 08 38 56

Page perso : http://iramis.cea.fr/Pisp/cyrille.barreteau/

Labo : http://iramis.cea.fr/spec/GMT/

Le nanomagnétisme est un domaine très fécond à la frontière de nombreuses disciplines. Il consiste en l’étude (et l’utilisation) du magnétisme de systèmes de taille nanométrique. Les propriétés magnétiques des nano-objets sont en générale fortement modifiées par rapport à leur équivalent volumique. L’enjeu est d’arriver à contrôler/manipuler leur propriétés magnétiques. Une des propriétés fondamentales des matériaux magnétiques est leur anisotropie qui est caractérisée par des directions d’aimantation préférentielles mais également par des propriétés de transport électronique qui dépendent de l’angle relatif entre l’aimantation et le courant électrique. Récemment il a été démontré que l’interaction d’une couche mince magnétique avec des molécules pouvait modifier fortement l’anisotropie de cette couche du fait de l’hybridation entre la molécule et les atomes de la surface du substrat. De même des expériences récentes ont mis en évidence des anisotropies de magnétorésistance (AMR : Anisotropic Magneto-Resistance) très fortes lorsque dans des constrictions de nickel connectées par une molécule de benzène.

Au cours de cette thèse nous nous proposons d’étudier à l’aide de méthodes de calcul de structure électronique ab-initio et/ou liaisons fortes l’anisotropie magnétique dans des systèmes hybrides substrat magnétique/molécule. On considéra dans un premier temps des couches de cobalt et/ou fer en interaction avec des molécules simples. Ensuite des molécules plus complexes seront considérées. L’objectif final étant de trouver les systèmes molécule/substrat qui présentent les propriétés optimales en vue de possibles applications.

Génération d'électrons chauds d'origine plasmonique : Physique et applications

SL-DRF-18-0292

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire d'Electronique et nanoPhotonique Organique (LEPO)

Saclay

Contact :

Ludovic DOUILLARD

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Ludovic DOUILLARD

CEA - DRF/IRAMIS/SPEC/LEPO

01 69 08 36 26

Directeur de thèse :

Ludovic DOUILLARD

CEA - DRF/IRAMIS/SPEC/LEPO

01 69 08 36 26

Page perso : http://iramis.cea.fr/Pisp/ludovic.douillard/

Labo : http://iramis.cea.fr/spec/lepo/

Physique et applications d'électrons chauds d'origine plasmonique



A petite échelle, l’interaction de la lumière avec un objet métallique se traduit par l’occurrence de résonances au sein du spectre d’absorption, les résonances plasmon. Ces résonances correspondent aux processus d’oscillations collectives des électrons de conduction du métal [Mie 1908] et constituent un domaine de recherche à part entière baptisé plasmonique. Au-delà des aspects de manipulation du champ proche optique, un objet métallique à résonance plasmon constitue une source d’électrons chauds, dont les propriétés électroniques atypiques peuvent être mises à profit pour la conduite de réaction de chimie locale.



Ce travail a pour objectif d’étudier la physique amont de la production des électrons chauds par un objet métallique de petite taille en lien avec des applications, notamment médicales telles que la thérapie photodynamique ciblée. Il s’agit d’un travail à dominante expérimentale en collaboration étroite avec un partenariat pertinent de physiciens, chimistes, biologistes et oncologues issus de différentes institutions (CEA, CentraleSupélec, Hospital Saint-Louis). Il bénéficiera de l’expérience acquise par le groupe CEA IRAMIS SPEC en microscopie LEEM / PEEM (Low Energy Electron / PhotoEmission Electron Microscopy), dont le principe repose sur le suivi de la distribution des photoélectrons émis en réponse à une excitation plasmon [Douillard 2012, 2011] et constitue par la même une technique de choix pour ce type d’étude.



Les objectifs visent à répondre à d’importantes questions fondamentales relatives à l’émission d’électrons chauds par une particule métallique sous excitation optique multiphotonique. Il s’agit notamment de déterminer la dynamique d’émission des porteurs de charges (expérience pompe sonde) et leurs distributions tant spatiale à l’échelle du nano-objet, qu’énergétique au travers de spectres en énergie cinétique d’objets individuels. L’objectif ultime s’inscrit dans le cadre d’un projet d’oncologie médicale, dont le but est l’optimisation de thérapies en cours de développement, notamment photothermique et photodynamique.



Mots clefs : Electrons chauds, plasmon, laser, PEEM, LEEM



[Mie 1908] G. Mie, Ann. Phys. (Leipzig) 25 (1908) 377

[Douillard 2012, 11] C. Awada, et al. J. of Phys. Chem. C 16 (2012) 14591 DOI 10.1021/jp303475c, L. Douillard, F. Charra. J. of Phys. D: Applied Physics 44 (2011) 464002 DOI:10.1088/0022-3727/44/46/464002, C. Hrelescu, et al. Nano Lett. 11 (2011) 402–407 DOI: 10.1021/nl103007m



Laboratoire d’accueil CEA IRAMIS SPEC UMR CNRS 3680

Correspondant CEA chargé du suivi de la thèse ludovic.douillard@cea.fr

Ecole doctorale Ondes et Matière, Univ. Paris Saclay.

Imagerie par Résonance Magnétique à très bas Champ

SL-DRF-18-0386

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Claude FERMON

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Claude FERMON

CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 94 01

Directeur de thèse :

Claude FERMON

CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 94 01

Nous avons développé des capteurs magnétiques, appelés capteurs mixtes, basés sur la combinaison d’une boucle supraconductrice et d’un microcapteur à magnétorésistance géante atteignant une sensibilité de l’ordre du femtoTesla. Ces capteurs ouvrent la possibilité d’explorer un nouveau domaine : la Résonance Magnétique Nucléaire et l’Imagerie par Résonance Magnétique à très bas champ (de l'ordre du milliTesla).



Actuellement un système prototype d'IRM très bas champ tête entière a été réalisé et a montré la pertinence de l'approche. Le but de la thèse sera d’une part de participer à l'installation du système à Neurospin et d'implémenter des méthodes d'accélération de l'acquisition basée sur une optimisation de la couverture de l'espace réciproque. En parallèle, un travail sur la génération suivante de capteurs magnétiques basée sur des jonctions tunnel magnétiques sera réalisé avec pour objectif d'améliorer le rapport signal sur bruit.

Modes à constante diélectrique proche de zéro dans des métamatériaux pour l’optoélectronique

SL-DRF-18-0399

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire d'Electronique et nanoPhotonique Organique (LEPO)

Saclay

Contact :

Simon VASSANT

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Simon VASSANT

CEA - DRF/IRAMIS/SPEC/LEPO

+33 169 089 597

Directeur de thèse :

Simon VASSANT

CEA - DRF/IRAMIS/SPEC/LEPO

+33 169 089 597

Page perso : http://iramis.cea.fr/Pisp/simon.vassant/index.php

Labo : http://iramis.cea.fr/spec/LEPO/

Notre équipe déjà démontré théoriquement et expérimentalement l’intérêt de modes électromagnétiques spécifiques (modes "Epsilon-near-zero") pour l’optoélectronique. Ces modes permettent de confiner la lumière dans une couche d’épaisseur sub-longueur d’onde (donc inférieure à la profondeur de pénétration du rayonnement) et maximisent ainsi l’interaction entre les photons et la matière.



Le sujet de thèse porte sur la conception, la réalisation et la caractérisation de matériaux artificiels (métamatériaux) pour réaliser et contrôler ces modes électromagnétiques.



Deux approches seront envisagées :

- La première repose sur des concepts de détecteur à cascade quantique, en partenariat avec le C2N, l’ONERA, l’Institut d’Optique et le 3-5 Lab (Thalès) dans le cadre d’un projet ANR financé de 2018 à 2022.

- La seconde, plus exploratoire, propose d’utiliser des assemblages supra-moléculaires sur du graphène. Cette technique est au cœur de l’expertise du laboratoire.



Le doctorant devra modéliser et dimensionner les structures à réaliser (à l’aide de codes numériques déjà développés), puis devra fabriquer et caractériser les échantillons réalisés. Une partie de la fabrication sera réalisée en salle blanche.

Nanocristaux métalliques magnétiques pour la spintronique

SL-DRF-18-0336

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire d'Electronique et nanoPhotonique Organique (LEPO)

Saclay

Contact :

Fabien SILLY

Date souhaitée pour le début de la thèse :

Contact :

Fabien SILLY

CEA - DRF/IRAMIS/SPEC/LEPO

01 69 08 80 19

Directeur de thèse :

Fabien SILLY

CEA - DRF/IRAMIS/SPEC/LEPO

01 69 08 80 19

Page perso : http://iramis.cea.fr/Pisp/fabien.silly/index.html

Labo : http://iramis.cea.fr/spec/LEPO/

La structure et la forme de nano-objets métalliques magnétiques influencent drastiquement leurs propriétés électroniques aux échelles nanométriques. L’objectif de cette thèse est de contrôler la croissance de nanocristaux métalliques de forme, taille, structure et composition chimique différentes et d’explorer comment ces paramètres modifient leurs propriétés magnétiques. Ces nanocristaux magnétiques seront caractérisés par microscopie à effet tunnel sous ultra vide (STM-UHV), spectroscopie polarisée en spin (SP-STS) et Rayonnement synchrotron. Ces nanostructures sont des systèmes modèles pour appréhender les phénomènes magnétiques originaux apparaissant aux échelles nanométriques.

Nouveaux états électroniques dans les monocristaux et films minces d’iridates

SL-DRF-18-0419

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Jean-Baptiste MOUSSY

Dorothée COLSON

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Jean-Baptiste MOUSSY

CEA - DRF/IRAMIS/SPEC/LNO

01-69-08-92-00

Directeur de thèse :

Dorothée COLSON

CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 73 14

Page perso : http://iramis.cea.fr/spec/Pisp/jean-baptiste.moussy/

Labo : http://iramis.cea.fr/spec/LNO/

Voir aussi : http://iramis.cea.fr/spec/Pisp/dorothee.colson/

Les iridates (composés à base d'iridium, tel que : Sr2IrO4, Sr3Ir2O7 ...) ont récemment attiré l'attention du fait de leurs propriétés physiques originales, telles que la supraconductivité à haute température critique ou l'état d'isolant topologique (matériau isolant en volume mais possédant des états de surface métalliques), dû à la présence d'un fort couplage spin-orbite et de fortes interactions électroniques. En particulier, l'identification d'une phase topologique dans ces oxydes devrait permettre d'explorer de nouvelles façons de manipuler le spin des électrons, un point clé pour les applications en spintronique.



Le but de ce projet de thèse est d'étudier l'émergence d'isolants de Mott (localisation des électrons dans une phase conductrice), de propriétés magnétiques et topologiques dans des monocristaux, des couches simples et des hétérostructures d'iridates. Plus précisément, les objectifs de la thèse seront de synthétiser de nouveaux composés de la famille des iridates (par exemple, Sr2IrO4 et Sr3Ir2O7) sous forme de monocristaux et de couches minces pour explorer leurs propriétés électroniques (nouvelles phases topologiques, nouveaux isolants Mott, etc.). Pour la croissance de monocristaux, la méthode d'auto-flux sera choisie. Les cristaux des composés purs seront synthétisés et le dopage électronique sera réalisé par des substitutions cationiques (par exemple Sr / La).



Les cristaux seront ensuite caractérisés par différentes techniques : diffraction de rayons X, microsonde électronique et mesures magnétiques (SQUID, magnétométrie VSM). Pour les films minces, une nouvelle technique de croissance sous ultra-vide développée au laboratoire sera utilisée : la méthode de dépôt par laser pulsé (PLD) avec un faisceau laser en régime nanométrique ou femtoseconde. La PLD est une technique bien connue pour la croissance épitaxiale de couches minces d'oxyde (cuprates, manganites, ferrites ...), qui est basée sur l'ablation par un faisceau laser de la cible du matériau à déposer sur un substrat monocristallin. Une attention particulière sera portée aux propriétés structurales et physiques des couches minces d'oxydes en utilisant la diffraction d'électrons in situ (RHEED), la spectroscopie par photoémission (XPS / UPS) ou des techniques ex situ comme la microscopie en champ proche (AFM), le magnétisme (SQUID, VSM).



Les propriétés électroniques des échantillons (cristaux et films) seront ensuite étudiées en collaboration avec le LPS-Orsay, y compris les mesures électriques et l'effet Hall de spin quantique, qui est la signature d'un état topologique.

Photo-électrolyse de l’eau assistée par un potentiel interne

SL-DRF-18-0353

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Hélène MAGNAN

Antoine BARBIER

Date souhaitée pour le début de la thèse : 01-10-2017

Contact :

Hélène MAGNAN

CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 94 04

Directeur de thèse :

Antoine BARBIER

CEA - DRF/IRAMIS/SPEC/LNO

01.69.08.39.23

Page perso : http://iramis.cea.fr/Pisp/helene.magnan/

Labo : http://iramis.cea.fr/spec/LNO/

Voir aussi : http://iramis.cea.fr/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=1996&id_unit=0&id_groupe=196

La photo-électrolyse de l’eau permet la production directe d’hydrogène, en utilisant l’énergie solaire. Les photo-anodes les plus performantes sont obtenues avec des oxydes métalliques. Toutefois, à ce jour, aucun oxyde semi-conducteur simple ne réunit toutes les propriétés de photo-anode nécessaires pour permettre une production raisonnable d’hydrogène par ce procédé.



Dans la thèse expérimentale proposée, nous proposons d’utiliser la polarisation électrique d’un ferroélectrique pour exalter la séparation de charge dans les photoanodes. Pour cette étude, nous étudierons des échantillons modèles préparés par épitaxie par jets moléculaires et étudierons l’influence de l’orientation de la polarisation électrique (vers le haut, vers le bas, non polarisé et multi domaines) sur l’efficacité pour la photo-électrolyse. De plus, afin de comprendre le rôle exact de la polarisation, nous mesurerons en utilisant le rayonnement synchrotron, la durée de vie de la paire électron-trou et la structure électronique pour les différents états de polarisation. Cette thèse s’inscrit dans un projet de recherche collaboratif entre le CEA, le synchrotron SOLEIL et avec l’université de Bourgogne pour la modélisation des systèmes étudiés.

Transitions supermagnétiques dans les super-réseaux de nanoparticules magnétiques

SL-DRF-18-0451

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

caroline RAEPSAET

Sawako NAKAMAE

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

caroline RAEPSAET

CEA - DRF/IRAMIS/SPEC/SPHYNX

0169082423

Directeur de thèse :

Sawako NAKAMAE

CEA - DRF/IRAMIS/SPEC/SPHYNX

0169087538

Labo : https://iramis.cea.fr/spec/SPHYNX

Les interactions entre nanoparticules magnétiques entraînent une grande variété de comportements magnétiques dont l'étude à elle seule constitue un domaine émergent de la physique : le "supermagnétisme". Dans le cadre de ce projet de thèse, nous proposons une étude expérimentale des transitions supermagnétiques : verre de superspins (SSG) et superferromagnétisme (SFM) dipolaire, dans des supracristaux (SC) de nanoparticules (NP) de cobalt aux contraintes structurelles contrôlées.



Nous travaillons sur des supracristaux 3D, solides artificiels dont la brique élémentaire est non plus l'atome mais la nanoparticule, petit cristal de dimension nanométrique. Comme dans les solides atomiques, les nanoparticules sont organisées suivant une structure spécifique, dans notre cas un réseau cubique à faces centrées, qui présente une compacité importante. Régulièrement organisées sur les sites supracristallins, les nanoparticules peuvent donc interagir entre elles par interaction magnétique dipolaire. La simplicité géométrique de ces supracristaux en fait un système "réel" simple et riche d’enseignements, qui peut être modélisé numériquement et théoriquement. Les échantillons de supracristaux sont préparés par le laboratoire MONARIS, UPMC/CNRS, dans des conditions de cristallinité (des NP et des SC) et de morphologie contrôlées.



Le sujet de cette thèse concerne l’étude expérimentale de l’évolution de l’état magnétique de supracristaux de nanoparticules de cobalt. Nous travaillerons à partir de deux méthodes de mesures : une méthode globale par magnétomètrie à SQUID (Superconducting Quantum Interference Device) et une méthode microscopique par sonde de Hall de taille micrométrique. Cette deuxième méthode permet de mesurer le champ magnétique local dans des domaines de taille micrométrique, donc comparables à celle d’un supracristal isolé, et peuvent être sensibles au retournement d’aimantation d'un petit nombre de nanoparticules. A l’aide de ces deux méthodes, nous espérons pouvoir détecter une transition SSG/SFM dans un supracristal unique monocristallin, preuve expérimentale décisive de l’existence du SFM dipolaire.



Le principal enjeu de ce travail concerne la physico-chimie fondamentale : mise en évidence d’un état superferromagnétique dipolaire prévu par la théorie mais non encore observé expérimentalement dans les systèmes 3D. Le travail expérimental effectué dans le cadre de la thèse se fera donc en étroite collaboration avec les théoriciens, pour interpréter les résultats expérimentaux mais également pour valider les modèles développés. Enfin l’utilisation de ces supracristaux intéresse le domaine médical, le stockage de données…



Les expériences projetées feront intervenir des connaissances en magnétisme des nanoparticules, des techniques de mesures magnétiques (magnétométrie ultra-sensible intégrant des mesures à faible niveau) et de cryogénie, des analyses statistiques et l'interprétation de résultats expérimentaux. Les candidats motivés auront la possibilité de participer à la synthèse des NP, des SC et à leurs caractérisations structurales (SAXS, TEM, MEB, etc.).

Transport quantique de chaleur dans les hétérostructures de Van der Waals à base de graphène

SL-DRF-18-0412

Domaine de recherche : Physique mésoscopique
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Groupe Nano-Electronique (GNE)

Saclay

Contact :

François PARMENTIER

Patrice ROCHE

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

François PARMENTIER

CEA - DRF/IRAMIS/SPEC/GNE

+33169087311

Directeur de thèse :

Patrice ROCHE

CEA - DRF/IRAMIS/SPEC/GNE

0169087216

Labo : http://nanoelectronics.wikidot.com/research

L'objectif de ce projet est d'explorer par des mesures de bruit le transport quantique de chaleur dans les nouveaux états de la matière apparaissant dans le graphène ultra-propre sous fort champ magnétique.



L’obtention d’échantillons de graphène (un cristal bidimensionnel d’atomes de carbone dans un réseau en nid d’abeilles) ultra-propres a récemment permis l’observation de nouveaux états de la matière condensée dans le graphène sous fort champ magnétique. En particulier, de nouveaux états de l’effet Hall quantique ont été observés pour des très faibles densités de porteurs de charge [1], pour lesquelles les interactions et les corrélations électroniques peuvent rendre le graphène totalement isolant, ou faire donner lieu à un régime d’effet Hall quantique de spin. Dans celui-ci, l’intérieur du plan de graphène est isolant, et le courant électrique est transporté uniquement le long des bords, chaque orientation de spin se propageant dans une direction opposée. La nature exacte de ces différents états n’est pas encore complètement connue, du fait notamment qu’il n’est pas possible de sonder les propriétés des régions isolantes par des mesures usuelles de transport électronique.



Nous proposons une nouvelle approche pour sonder ces phases, basée sur la mesure du flux quantique de chaleur transporté par les excitations neutres de ces systèmes, comme les ondes de spin, à très basse température. Notre méthode consistera à connecter le graphène avec des petites électrodes métalliques qui serviront de réservoirs thermiques. La température de chacun de ces réservoirs sera déterminée à l’aide de mesures de bruit ultra-sensibles [2], ce qui donnera accès au flux de chaleur.



La première étape consistera à fabriquer les échantillons de graphène encapsulé dans du nitrure de bore hexagonal [3]. Cette technique, récemment développée au laboratoire, permet d’obtenir des cristaux de graphène ultra-purs, et de relativement grande taille. En parallèle, une plate-forme expérimentale pour effectuer des mesures de bruits ultra-haute sensibilité, à très basse température et forts champs magnétiques, sera mise en place au laboratoire.



[1] Young et al., Nature 505, 528-532 (2014).

[2] Jezouin, Parmentier et al., Science 342, 601 (2013).

[3] Wang et al., Science 342, 614 (2013).

Transport thermoélectrique hors-équilibre dans des conducteurs quantiques

SL-DRF-18-0459

Domaine de recherche : Physique mésoscopique
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Groupe Mésocopie Modélisation et Thermoélectricité (GMT)

Saclay

Contact :

Geneviève FLEURY

Alexander SMOGUNOV

Date souhaitée pour le début de la thèse : 01-10-2017

Contact :

Geneviève FLEURY

CEA - DRF/IRAMIS/SPEC/GMT

0169087347

Directeur de thèse :

Alexander SMOGUNOV

CEA - DRF/IRAMIS/SPEC/GMT

0169083032

Page perso : http://iramis.cea.fr/spec/Pisp/genevieve.fleury/

Labo : http://iramis.cea.fr/spec/GMT/

Ce sujet bénéficie aujourd'hui d'un financement CEA, comme sujet "phare". La sélection des candidatures reçues se fera au début du printemps 2018.



Les effets thermoélectriques Seebeck et Peltier permettent la conversion d'énergie thermique en énergie électrique et vice-versa. Ainsi l'on peut avec l'effet Seebeck récupérer de la chaleur perdue pour produire de l'électricité. A l'inverse, il est possible en utilisant l'effet Peltier de refroidir localement un dispositif en exploitant de la puissance électrique. Pendant longtemps, ces effets thermoélectriques n'ont montré que des rendements très faibles et ils n'ont ainsi trouvé que des applications marginales. Mais depuis peu, les règles du jeu ont changé : la découverte de nouveaux matériaux prometteurs, les progrès en nanofabrication et la volonté grandissante de répondre aux impératifs d'économie d'énergie ont relancé la recherche.



Nous proposons dans cette thèse théorique d'étudier analytiquement et numériquement la conversion thermoélectrique dans des systèmes mésocopiques de basse dimension. Nous nous intéresserons à un régime loin de l'équilibre où des effets thermoélectriques importants sont attendus. Nous considérerons en particulier des systèmes soumis à un forçage dynamique. D'un point de vue méthodologique, nous utiliserons les outils numériques et le formalisme analytique développés au CEA-Grenoble (groupe de Xavier Waintal) pour l'étude du transport quantique résolu en temps (voir https://kwant-project.org/). Nous l'adapterons au cas du transport thermoélectrique et l'appliquerons sur divers systèmes (boîte quantique, contact ponctuel quantique, nanofils…).

 

Retour en haut