Domaine, spécialité : Physique des liquides
Mots-Clés : Physique des matériaux, optique
Unité d’accueil : LLB/NFMQ
Résumé
Il est généralement admis que l’écoulement d’un fluide dans un canal ne donne lieu à aucune variation de température (sans source extérieure de chaleur ou sans atteindre des vitesses extrêmes). La densité du liquide n’est pas supposée changer sous écoulement, et donc sa température non plus.
Mais ces lois hydrodynamiques classiques ne sont plus vraies à l’échelle mésoscopique (< 1mm). En outre, notre équipe a montré que les liquides sont dotés à petite échelle, d’élasticité de cisaillement, propriété connue pour être le propre des solides. Nous avons expérimentalement montré que l’écoulement d’un fluide peut conduire à un échauffement ou un refroidissement lorsque l’élasticité du liquide est sollicitée.
Sujet détaillé
L’élasticité est une des plus anciennes propriétés physiques de la matière condensée. Elle s’exprime par une constante G de proportionnalité entre la contrainte appliquée (σ) et la déformation (γ) : σ = G.γ (loi de Hooke). L’absence de résistance à une déformation en cisaillement (G’ = 0) indique un comportement de type liquide (modèle de Maxwell). Longtemps considérée comme propre aux solides, une élasticité a été récemment identifiée dans les liquides à l’échelle submillimétrique [1].
L’identification d’élasticité de cisaillement (G’ non nul) à petit échelle est la promesse de découvertes de nouvelles propriétés solides des liquides. Ainsi, alors qu’aucun changement de température n’est conventionnellement prévu sous écoulement, nous montrons que ce n’est plus vrai à petite échelle et identifions l’émergence, sans source thermique extérieure, d’une variation positive ou négative de la température en fonction des conditions appliquées [2,3]. Nous explorerons la réponse thermique des liquides et exploiterons cette capacité de conversion de l’énergie mécanique en variations de température dans le cadre de la micro-hydrodynamique.
Enfin, nous renforcerons nos collaborations avec les théoriciens, notamment avec A. Zaccone de l’Université de Milan.
Ce sujet est en relation aux propriétés liées au mouillage, aux effets thermiques et au transport du liquide à petite échelle.
Références :
- “Explaining the low-frequency shear elasticity of confined liquids, A. Zaccone, K. Trachenko, PNAS, 117 (2020) 19653–19655. Doi:10.1073/pnas.2010787117.
- E. Kume, P. Baroni, L. Noirez, “Strain-induced violation of temperature uniformity in mesoscale liquids” Sci. Rep. 10 13340 (2020). Doi : 10.1038/s41598-020-69404-1.
- E. Kume, A. Zaccone, L. Noirez, « Unexpected Thermo-Elastic effects in Liquid Glycerol by Mechanical Deformation » Physics of Fluids, 33, 072007 (2021) Doi: 10.1063/5.0051587.
Lieu du stage
LLB, Centre CEA Saclay, France
Conditions de stage
- Durée du stage : 3 mois
- Niveau d’étude requis : Bac+5
- Formation : Master 2
- Poursuite possible en thèse : Oui
- Date limite de candidature : 5 janvier 2026
Compétences requises
Langue : Anglais
Méthodes, techniques :
Microfluidique, infra-rouge, relaxation dynamique, optique et traitement d’images,
Langages informatiques et logiciels :
Home-made softwares en collaboration avec les informaticiens, FIJI
Liens utiles
Site web du laboratoire : https://iramis.cea.fr/llb/nfmq/
Page personnelle du responsable de stage : Laurence Noirez
Responsable du stage
Laurence NOIREZ (LLB/NFMQ)
Tél. : 0169086300
Email :