CV
- 2014: Habilitation à Diriger des Recherches: « Covalent and non-covalent functionalization of carbon nanotubes and graphene« , Université Paris-Sud XI (France)
- January 2007: Researcher at CEA-Saclay
- 2004-2006: Post doc in the group of the Prof. Maurizio Prato, Università di Trieste (Italy)
- 2000-2004: PhD in Chemistry in the group of Prof. Robert Deschenaux, Université de Neuchâtel (Switzerland)
Research
Chemistry of carbon nanotubes
The fabrication of functional hybrid materials that preserves and combines the properties of their building blocks is a central issue of nanosciences. Among the different classes of nanomaterials, carbon nanotubes and graphene constitute a class of materials exhibiting exceptional mechanical and electronic properties and were also found to be promising candidates for composites, electronic, sensing, energy conversion and biomedical applications. However, fabrication of nanotube or graphene-based molecular assemblies is still limited because of the difficulty to incorporate highly engineered molecules on the nanotube surfaces. This problematic issue can have mainly two origins: incompatibility between the functionality on the molecules and the conditions required for nanotube functionalization and/or the fact that nanotube functionalization requires a large excess of reagent that is difficult or impossible to recycle. In this context, we work on the chemistry of carbon-based nanomaterials and we develop innovative functionalization methods for these materials.
Covalent functionalization
The “Click Chemistry” can bring very elegant solutions to easily achieve nanotube-based functional materials. We reported several examples of functionalization of carbon nanotubes with chromophores via the CuAAC.
- Efficient Functionalization of Carbon Nanotubes with Porphyrin Dendrons via “Click Chemistry”, T. Palacin, H. Le Khanh, B. Jousselme, P. Jegou, A. Filoramo, C. Ehli, D. M. Guldi and S. Campidelli, J. Am. Chem. Soc., 2009, 131, 15394.
- Facile Decoration of Functionalized Single-Wall Carbon Nanotubes with Phthalocyanines via “Click Chemistry”, S. Campidelli, B. Ballesteros, A. Filoramo, D. Díaz Díaz, G. de la Torre, T. Torres, G. M. A. Rahman, C. Ehli, D. Kiessling, F. Werner, V. Sgobba, D. M. Guldi, C. Cioffi, M. Prato, and J.-P. Bourgoin, J. Am. Chem. Soc., 2008, 130, 11503.
Functionalization for batteries
Lithium-ion batteries are now among the most widespread systems for portable electronic devices. However, their performances seem to level off and new systems with higher potentialities such as lithium-sulfur (Li-S) or lithium-organic (Li-organic) are currently under studying. The solubility of the active materials (sulfur, organic molecules) in most electrolytes constitutes a serious obstacle to their commercialization. Here, we present our approach consisting in grafting the active molecules onto carbon nanotubes to avoid their dissolution. The nanotubes allow good electrical conductivity in the materials and act as scaffold for the covalent grafting of the molecules. The resulting systems are extremely stable (80% of the initial capacity maintained after 800 cycles) and present a promising specific capacity.
- Covalently-Functionalized Carbon Nanotubes as Stable Cathode Materials of Lithium/Organic Batteries, G. Charrier, A. Desrues, C. Barchasz, J. Leroy, R. Cornut, B. Jousselme, S. Campidelli, J. Mater. Chem. A, 2016, 4, 15036-15040.
- Sulfur-Containing Molecules Grafted on Carbon Nanotubes as Highly Cyclable Cathodes for Lithium/Organic Batteries, G. Charrier, H. Kamaleddine, C. Barchasz, R. Cornut, B. Jousselme and S. Campidelli, ChemElectroChem, 2018, 5, 1732-1737.
Non-covalent functionalization
The non-covalent functionalization of carbon nanotubes and graphene can be performed by pi-stacking and/or hydrophobic interactions. We reported several examples of functionalization of SWNT or MWNT with porphyrin/phthalocyanine derivatives. Depending of the nature of the metal in the macrocycles (free-base, Zn, Co, Fe, Pt, Ln…), different properties are observed and the resulting hybrid materials may find applications in optics, optoelectronics, electronics or electrocatalysis.
Polymerization of molecules around the nanotubes
The covalent grafting of molecules onto the nanotube sidewalls give rise to robust conjugates since the nanotubes and the addends are linked through covalent bonds; however, the transformation of carbon atoms hybridized sp2 into sp3 induces a sizeable loss of their electronic properties. On the contrary, the non-covalent functionalization permits to better preserve the electronic properties of the nanotubes. However, this approach suffers from a major drawback which is the lack of stability of the resulting assemblies. Indeed, molecules adsorbed onto the nanotube sidewall can desorb, more or less easily (depending on the size and/or conformation of the grafted molecules/polymers), when for example the solvent changes or the nanotubes are filtered and redispersed.
We developed innovative methods of functionalization of carbon nanotubes and graphene combining most advantages of the covalent and non-covalent approaches without their principal drawbacks. This method is based on the non-covalent adsorption of functional monomeric molecules on nanotubes or graphene followed by the polymerization of the molecules to create a covalent organic shell around the carbon nanomaterials. The resulting hybrids are stable, enabling their purification by filtration and making easier their manipulations while preserving their unique electronic and optical properties.
- Functionalization of Carbon Nanotubes through Polymerization in Micelles: A Bridge between the Covalent and Noncovalent Methods, G. Clavé, G. Delport, C. Roquelet, J.-S. Lauret, E. Deleporte, F. Vialla, B. Langlois, R. Parret, C. Voisin, P. Roussignol, B. Jousselme, A. Gloter, O. Stephan, A. Filoramo, V. Derycke and S. Campidelli, Chem. Mater., 2013, 25, 2700-2707.
The formation of core-shell structures has permitted to improve greatly the emission properties of inorganic quantum dots. Single-Walled Carbon Nanotubes, thanks to their emission in the near infrared region, are promising materials for optoelectronics. However, the extreme sensitivity of nanotubes to their environment hinders their applications. Thus, the fabrication of tailor-made functional hybrid materials that preserve the optical properties of SWNTs and facilitate their manipulation is extremely important. Here, we describe the synthesis of core-shell nanotube materials made of SWNTs and polystyrene. We developed a two-step strategy that permits to form a stable and homogeneous layer of polymer around the nanotubes by adding first polystyrene via the micelle swelling method and then by locking the structure via radical polymerisation in micelles of styrene and divinylbenzene. After polymerisation and redispersion, the nanotube hybrids can be easily manipulated in solution; they still exhibited photoluminescence properties both in solution and in the solid state demonstrating that the SWNTs embedded in their polystyrene shell are isolated one from each other.
- Single-Walled Carbon Nanotube/Polystyrene Core-Shell Hybrids: Synthesis and Photoluminescence Properties, L. Orcin-Chaix, G. Trippé-Allard, C. Voisin, V. Derycke, J.-S. Lauret and S. Campidelli, J. Mater. Chem. C, 2018, 6, 4786-4792.
- Photostability of single-walled carbon nanotubes/polymer core-shell hybrids as Telecom Wavelength Emitters, L. Orcin-Chaix, S. Campidelli, L. Rondin, F. Fossard, F. Bretenaker, Y. Chassagneux, C. Voisin, and J.-S. Lauret, ACS Appl. Nano Mater., 2020, 3, 7291-7296.
The combination of carbon nanotubes with cobalt- or iron-porphyrins give rise to materials exhibiting electrocatalytic properties for the Oxygen Reduction Reaction (ORR).
- Synergic Effect on Catalytic Activity of Carbon Nanotubes and Strapped Iron Porphyrin Hybrids for Oxygen Reduction Reaction, M. Hanana, H. Arcostanzo, M. Bouget, P. K. Das, S. Le Gac, R. Cornut, B. Jousselme, V. Dorcet, B. Boitrel and S. Campidelli, New J. Chem., 2018, 42, 19749-19754.
- Carbon Nanotube-Templated Synthesis of Covalent Porphyrin Network for Oxygen Reduction Reaction, I. Hijazi, T. Bourgeteau, R. Cornut, A. Morozan, A. Filoramo, J. Leroy, V. Derycke, B. Jousselme, S. Campidelli, J. Am. Chem. Soc., 2014, 136, 6348-6354.
Graphene materials
Graphene Nanoparticles
The outstanding electronic, optical and mechanical properties of graphene strongly inspire the scientific community at both the fundamental and applicative levels. One of the main challenges for the use of graphene in devices is the control and modification of its electronic properties, and notably the controlled opening of a sizable bandgap. It is well known that when a material is reduced to nanoscale dimensions, the electronic confinement induces original size-dependent properties. The reduction of one dimension of graphene down to the nanoscale leads to graphene nanoribbons (GNRs) while the reduction of the two dimensions leads to graphene quantum dots (GQDs), both having a bandgap.
For the last decade, a great attention has been paid to the size reduction of graphene using conventional top-down approaches (lithography and etching, thermal treatments and oxidation of bulk materials). However, top-down approaches do not permit to manipulate the structure of the material at the atomic scale. In particular, they do not allow a sufficient control of the morphology and oxidation state of the edges, which drastically impact the properties. The resulting materials are inhomogeneous and their properties, largely impacted by defects, strongly differ from the predicted and targeted ones. In order to truly control, with the required level of precision, the morphology and the composition of the materials and of its edges, the bottom-up approach is the relevant way to proceed.
Recently, we reported on a single-emitter study that directly addresses the intrinsic emission properties of graphene quantum dots synthesized via the “bottom-up” approach. In particular, we showed that they are efficient and stable single-photon emitters at room temperature and that their emission wavelength can be modified through the functionalization of their edges.
- Single photon emission from graphene quantum dots at room temperature, S. Zhao, J. Lavie, L. Rondin, L. Orcin-Chaix, C. Diederichs, P. Roussignol, Y. Chassagneux, C. Voisin, K. Müllen, A. Narita, S. Campidelli, and J.S. Lauret, Nat. Commun., 2018, 9, 3470.
- Vibronic effect and influence of aggregation on the photophysics of graphene quantum dots, T. Liu, C. Tonnelé, S. Zhao, L. Rondin, C. Elias, D. Medina-Lopez, H. Okuno, A. Narita, Y. Chassagneux, C. Voisin, S. Campidelli, D. Beljonne and J.-S. Lauret, Nanoscale, 2022, 14, 3826-3833.
- Vibronic fingerprints in the luminescence of graphene quantum dots at cryogenic temperature, T. Liu, B. Carles, C. Elias, C. Tonnelé, D. Medina-Lopez, A. Narita, Y. Chassagneux, C. Voisin, D. Beljonne, S. Campidelli, L. Rondin and J.-S. Lauret, submitted, J. Chem. Phys., 2022, 156, 104302.
In collaboration with several groups from the ENS Paris-Saclay, the University of Mons (Belgium) and the University of Warsaw (Poland), we have synthesized and studied a family of elongated graphene nanoparticles that exhibit a very high solubility, allowing easy handling and a very precise description of their properties in relation to theory. These graphene nanoparticles contain 78, 96, 114, and 132 sp2 carbon atoms. They exhibit absorption and emission in the red and near IR and photoluminescence quantum yields close to 100%. This work has been published in Nature Communications.
- Interplay of structure and photophysics of individualized rod-shaped graphene quantum dots with up to 132 sp² carbon atoms, D. Medina-Lopez, T. Liu, S. Osella, H. Levy-Falk, N. Rolland, C. Elias, G. Huber, P. Ticku, L. Rondin, B. Jousselme, D. Beljonne, J.-S. Lauret and S. Campidelli, Nat. Commun., 2023, 14:4728.
- Investigation of Rod-shaped Single Graphene Quantum Dot, H. Levy-Falk, O. Capelle, T. Liu, D. Medina-Lopez, E. Deleporte, S. Campidelli, L. Rondin and J.-S. Lauret, Phys. Status Solidi B, 2023, 2300310.
- Bottom-Up Synthesis, Dispersion and Properties of Rectangular-Shaped Graphene Quantum Dots, J. Lavie, V. B. Vu, D. Medina-Lopez, Y. Dappe, T. Liu, L. Rondin, J.-S. Lauret, S. Latil and S. Campidelli, Helv. Chim. Acta, 2023, e202300034.
Graphene oxide
We present a new strategy to form thickness-adjusted and ultra-smooth films of very large and unwrinkled graphene oxide (GO) flakes through the transfer of both hemispherical and vertical water-films stabilized by surfactants; this method is called “Bubble Deposition Method”. With its versatility in terms of substrate type (including flexible organic substrates) and in terms of flakes density (from isolated flakes to continuous and multilayer films), this technique is adapted to a broad range of experiments involving GO and rGO (reduced graphene oxide).
- Versatile Wafer-Scale Technique for the Formation of Ultrasmooth and Thickness-Controlled Graphene Oxide Films Based on Very Large Flakes, J. Azevedo, S. Campidelli, D. He, R. Cornut, S. Sorgues, J.-J. Benattar, C. Colbeau-Justin, V. Derycke, ACS. Appl. Mater. Interfaces, 2015, 7, 21270-21277
- New insights in the electronic transport and contact resistance in reduced graphene oxide based materials using Scanning Electrochemical Microscopy, T. Bourgeteau, S. Le-Vot, M. Bertucchi, V. Derycke, B. Jousselme, S. Campidelli, R. Cornut, J. Phys. Chem. Lett. 2014, 5, 4162-4166
The rapid rise of 2-dimensional nanomaterials implies the development of new versatile, high-resolution visualization and placement techniques. For example a single graphene layer becomes observable on Si/SiO2 substrates by reflected light under optical microscopy because of interference effects when the thickness of silicon oxide is optimized. However, differentiating monolayers from bilayers remains challenging and advanced techniques like Raman mapping, atomic force microscopy (AFM) or scanning electron microscopy (SEM) are more suitable to observe graphene monolayers. The two first are slow and the third one is operated in vacuum so that in all cases real-time experiments including notably chemical modifications are not accessible. The development of optical microscopy techniques that combine the speed, large area and high contrast of SEM with the topological information of AFM is therefore highly desirable. Dominique Ausserré (CNRS Le Mans) invented, in 2014, a new wide-field optical microscopy technique based on the use of previously unknown Anti-Reflection and Absorbing (ARA) layers that yield ultra-high contrast reflection imaging of monolayers. The BALM technique (Backside Absorbing Layer Microscopy) can achieve the sub-nanometer scale vertical resolution, large area and real time imaging. In this work, we demonstrate the potentiality of BALM by in operando imaging chemical modifications of graphene oxide. The technique can be applied to the deposition, observation and modification of any nanometer thick materials.
- Backside Absorbing Layer Microscopy: Watching Graphene Chemistry, S. Campidelli, R. Abou Khachfe, C. Amra, M. Zerrad, R. Cornut, V. Derycke, D. Ausserré, Sci. Adv., 2017, 3, e1601724.
- Ideal optical contrast for 2D materials observation using bi-layer antireflection absorbing substrates, K. Jaouen, R. Cornut, D. Ausserré, S. Campidelli and V. Derycke, Nanoscale, 2019, 11,6129-6135.
Fullerene chemistry
In the last 20 years, fullerene-based supramolecular assemblies were extensively investigated. Early works were mainly concerned with the complexation of C60 with molecular building blocks that favor the formation of inclusion complexes. Later, more sophisticated structures, in which the encoding information was introduced onto the fullerene using classical covalent functionalization, were reported. This approach has permitted to increase continuously the size, the order, and the complexity of the supramolecular assemblies and to afford, for example, fullerene-based micelles, vesicles or aggregates, polymers, liquid crystals and also the organization of fullerene on electrode or nanoparticle surfaces. We described the synthesis and the characterization of several fullerene-porphyrin or phthalocyanine dyads by CuAAC. The fullerene derivatives exhibited a rich polymorphism, which was investigated by AFM and SEM.
- Host-Guest Complexation of [60]Fullerenes and Porphyrins Enabled by “Click Chemistry”, K.-H. Le Ho, I. Hijazi, L. Rivier, C. Gautier, B. Jousselme, G. de Miguel, C. Romero-Nieto, D. M. Guldi, B. Heinrich, B. Donnio and S. Campidelli, Chem. Eur. J., 2013, 19, 11374-11381.
- Synthesis and self-assembly properties of fulleropyrrolidine prepared by Prato reaction, K.-H. Le Ho, S. Campidelli, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2014, 5, 025008
- Synthesis and self-assembly properties of fullerene/porphyrin-phthalocyanine and fullerene/bis-phthalocyanine triads, K.-H. Le Ho, B. Jousselme and S. Campidelli, J. Porphyr. Phthalocyanines, 2016, 20, 1142-1147.
- Light triggers molecular shuttling in rotaxanes:control over proximity and charge recombination, M. Wolf, A. Ogawa, M. Bechtold, M. Vonesch, J. Wytko, K. Oohora, S. Campidelli, T. Hayashi, D. M. Guldi and J. Weiss, Chem. Sci., 2019, 10, 3846-3853.
Porphyrin chemistry
Molecular self-assembly on surfaces is driven by the range of interactions between the molecules themselves and the substrate. Generally, a face-on structure is favored for aromatic molecules lying flat on the surface. Here we report on the supramolecular self-assembly of 5,10,15,20-tetrakis(10-bromoanthracen-9-yl)porphyrin on the Ag(111) and Ag(110) surfaces. Well-ordered molecular chains were observed by room-temperature scanning tunneling microscopy on both surfaces. The relatively small size of the unit cell revealed an edge-on configuration of the porphyrin macrocycles, i.e. perpendicular to the surface plane, as confirmed by molecular mechanics calculations. Distinct intermolecular interactions were found on the two surfaces, providing different molecular chain orientations on Ag(111) and on Ag(110).
- Edge-On Self-Assembly of Tetra-Bromoanthracenyl-Porphyrin on Silver Surfaces, N. Kalashnyk, M. Daher-Mansour, J. Pijeat, R. Plamont, X. Bouju, T. S. Balaban, S. Campidelli, L. Masson and S. Clair, J. Phys. Chem. C, 2020, 124, 22137-22142
- Synthesis and Suzuki-Miyaura cross coupling reactions for post synthetic modification of a tetrabromo-anthracenyl porphyrin, J. Pijeat, Y. J. Dappe, P. Thuéry and S. Campidelli, Org. Biomol. Chem., 2018, 16, 8106-8114.
Extended porphyrins
- Thermally Induced Synthesis of Anthracene-, Pyrene- and Naphthalene-Fused Porphyrins, J. Pijeat, L. Chaussy, R. Simoës, J. Isopi, J.-S. Lauret, F. Paolucci, M. Marcaccio and S. Campidelli, ChemistryOpen, 2021, 10, 997-1003.
Publications scientifiques
Publications dans la base HAL CEA.
2023
One-year post-exposure assessment of 14C-few-layer graphene biodistribution in mice: single versus repeated intratracheal administration, A. Sallustrau, M. Keck, P. Barbe, D. Georgin, N. Fresneau, S. Campidelli, B. Pibaleau, M. Pinault, M. Mayne-L’Hermite, C. Granotier-Beckers, M. Schlegel, V. Jehová González, E. Vázquez, D. Servent, F. Taran, Nanoscale, 2023, 15, 17621-17632.
Investigation of Rod-shaped Single Graphene Quantum Dot, H. Levy-Falk, O. Capelle, T. Liu, D. Medina-Lopez, E. Deleporte, S. Campidelli, L. Rondin and J.-S. Lauret, Phys. Status Solidi B, 2023, 2300310.
Interplay of structure and photophysics of individualized rod-shaped graphene quantum dots with up to 132 sp² carbon atoms, D. Medina-Lopez, T. Liu, S. Osella, H. Levy-Falk, N. Rolland, C. Elias, G. Huber, P. Ticku, L. Rondin, B. Jousselme, D. Beljonne, J.-S. Lauret and S. Campidelli, Nat. Commun., 2023, 14:4728.
Bottom-Up Synthesis, Dispersion and Properties of Rectangular-Shaped Graphene Quantum Dots, J. Lavie, V. B. Vu, D. Medina-Lopez, Y. Dappe, T. Liu, L. Rondin, J.-S. Lauret, S. Latil and S. Campidelli, Helv. Chim. Acta, 2023, e202300034.
Insights into the Need for Ab-Initio Calculations to Accurately Predict the Optical Properties of Metallic Carbon Nanotubes Based on Experimental Confrontation, D Baux, P. Hermet, S. Campidelli, J.-L. Bantignies, E. Rousseau and N. Izard, J. Phys. Chem. C, 2023, 27, 19088–19096.
Correlative radioimaging and mass spectrometry imaging: a powerful combination to study 14C-graphene oxide in vivo biodistribution, H. Cazier, C. Malgorn, D. Georgin, N. Fresneau, F. Beau, K. Kostarelos, C. Bussy, S. Campidelli, M. Pinault, M. Mayne-L’Hermite, F. Taran, C. Junot, F. Fenaille, A. Sallustrau and B. Colsch, Nanoscale, 2023, 15, 5510-5518.
Core-shell multi-walled carbon nanotubes/cobalt corroles hybrids for oxygen reduction reaction, P.-G. Julliard, M. Hanana, L. Alvarez, R. Cornut, B. Jousselme, G. Canard and S. Campidelli, Energy Fuels, 2023, 37, 684-692.
2022
Vibronic fingerprints in the luminescence of graphene quantum dots at cryogenic temperature, T. Liu, B. Carles, C. Elias, C. Tonnelé, D. Medina-Lopez, A. Narita, Y. Chassagneux, C. Voisin, D. Beljonne, S. Campidelli, L. Rondin and J.-S. Lauret, submitted, J. Chem. Phys., 2022, 156, 104302.
Vibronic effect and influence of aggregation on the photophysics of graphene quantum dots, T. Liu, C. Tonnelé, S. Zhao, L. Rondin, C. Elias, D. Medina-Lopez, H. Okuno, A. Narita, Y. Chassagneux, C. Voisin, S. Campidelli, D. Beljonne and J.-S. Lauret, Nanoscale, 2022, 14, 3826-3833.
One-Step Preparation of Fe/N/C Single-Atom Catalysts Containing Fe-N4 Sites from an Iron Complex Precursor with 5,6,7,8-Tetraphenyl-1,12-Diazatriphenylene Ligands, K. Matsumoto, A. Onoda, M. Kato, I. Yagi, K. Asakura, N. Tohnai, S. Campidelli and T. Hayashi, Chem. Eur. J., 2022, 28, e202103545.
2021
Solution-Processed Graphene-Nanographene van der Waals Heterostructures for Photodetectors with Efficient and Ultralong Charge Separation, Z. Liu, H. Qiu, S. Fu, C. Wang, X. Yao, A. G. Dixon, S. Campidelli, E. Pavlica, G. Bratina, S. Zhao, L. Rondin, J.-S. Lauret, A. Narita, M. Bonn, K. Müllen, A. Ciesielski, H. I. Wang and P. Samorì, J. Am. Chem. Soc., 2021, 143, 17109-17116.
Electrocatalytic Hydrogen Evolution Reaction Promoted by Co/N/C Catalysts Containing Co−Nx Active Sites Derived from Precursors Forming N-doped Graphene Nanoribbons, K. Matsumoto, A. Onoda, S. Campidelli and T. Hayashi, Bull. Chem. Soc. Jpn., 2021, 94, 2898-2905
ORR activity of metalated phenanthroline-strapped porphyrin adsorbed on carbon nanotubes, M. Hanana, C. Kahlfuss, J. Weiss, R. Cornut, B. Jousselme, J. A. Wytko and S. Campidelli, C. R. Chimie, 2021, 24, 5-12
Thermally Induced Synthesis of Anthracene-, Pyrene- and Naphthalene-Fused Porphyrins, J. Pijeat, L. Chaussy, R. Simoës, J. Isopi, J.-S. Lauret, F. Paolucci, M. Marcaccio and S. Campidelli, ChemistryOpen, 2021, 10, 997-1003.
Thermally Controlled Construction of Fe-Nx Active Sites on the Edge of a Graphene Nanoribbon for an Electrocatalytic Oxygen Reduction Reaction, K. Matsumoto, A. Onoda, T. Kitano, T. Sakata, H. Yasuda, S. Campidelli and T. Hayashi, ACS Appl. Mater. Interfaces, 2021, 13, 15101-15112.
2020
Edge-On Self-Assembly of Tetra-Bromoanthracenyl-Porphyrin on Silver Surfaces, N. Kalashnyk, M. Daher-Mansour, J. Pijeat, R. Plamont, X. Bouju, T. S. Balaban, S. Campidelli, L. Masson and S. Clair, J. Phys. Chem. C, 2020, 124, 22137-22142
Development of a Mass Spectrometry Imaging Method for Detecting and Mapping Graphene Oxide Nanoparticles in Rodent Tissues, H. Cazier, C. Malgorn, N. Fresneau, D. Georgin, A. Sallustrau, C. Chollet, J.-C. Tabet, S. Campidelli, M. Pinault, M. Mayne, F. Taran, V. Dive, C. Junot, F. Fenaille, B. Colsch, J. Am. Soc. Mass Spectrom., 2020, 31, 1025-1036.
Photostability of single-walled carbon nanotubes/polymer core-shell hybrids as Telecom Wavelength Emitters, L. Orcin-Chaix, S. Campidelli, L. Rondin, F. Fossard, F. Bretenaker, Y. Chassagneux, C. Voisin, and J.-S. Lauret, ACS Appl. Nano Mater., 2020, 3, 7291-7296.
Oxygen Reduction Reaction Catalyzed by Overhanging Carboxylic Acid Strapped Iron Porphyrins adsorbed on Carbon Nanotubes, B. Boitrel, M. Bouget, P. K. Das, S. Le Gac, T. Roisnel, M. Hanana, H. Arcostanzo, R. Cornut, B. Jousselme and S. Campidelli, J. Porphyr. Phthalocyanines, 2020, 24, 675-684.
2019
Large Graphene Oxide Flakes: From Isotopic to Nematic Liquid Crystal Phase Transition, S. Shahini, S. Campidelli and G. Scalia, Phys. Status Solidi B 2019, 256, 1900411
Ideal optical contrast for 2D materials observation using bi-layer antireflection absorbing substrates, K. Jaouen, R. Cornut, D. Ausserré, S. Campidelli and V. Derycke, Nanoscale, 2019, 11, 6129-6135.
Light triggers molecular shuttling in rotaxanes:control over proximity and charge recombination, M. Wolf, A. Ogawa, M. Bechtold, M. Vonesch, J. Wytko, K. Oohora, S. Campidelli, T. Hayashi, D. M. Guldi and J. Weiss, Chem. Sci., 2019, 10, 3846-3853.
Fermi level shift in carbon nanotubes by dye confinement, Y. Almadori, G. Delport, R. Chambard, L. Orcin-Chaix, A. C. Selvati, N. Izard, A. Belhboub, R. Aznar, B. Jousselme, S. Campidelli, P. Hermet, R. Le Parc, T. Saito, Y. Sato, K. Suenaga, P. Puech, J.-S. Lauret, G. Cassabois, J-L. Bantignies and L. Alvarez, Carbon, 2019, 149, 772-780.
2018
Synthesis and Suzuki-Miyaura cross coupling reactions for post synthetic modification of a tetrabromo-anthracenyl porphyrin, J. Pijeat, Y. J. Dappe, P. Thuéry and S. Campidelli, Org. Biomol. Chem., 2018, 16, 8106-8114.
Grafting of Porphyrin Oligomers on Single-Walled Carbon Nanotubes by Hay Coupling, I. Hijazi, K. Khedhiri and S. Campidelli, Org. Biomol. Chem., 2018, 16, 6767-6772.
Synergic Effect on Catalytic Activity of Carbon Nanotubes and Strapped Iron Porphyrin Hybrids for Oxygen Reduction Reaction, M. Hanana, H. Arcostanzo, M. Bouget, P. K. Das, S. Le Gac, R. Cornut, B. Jousselme, V. Dorcet, B. Boitrel and S. Campidelli, New J. Chem., 2018, 42, 19749-19754.
Sulfur-Containing Molecules Grafted on Carbon Nanotubes as Highly Cyclable Cathodes for Lithium/Organic Batteries, G. Charrier, H. Kamaleddine, C. Barchasz, R. Cornut, B. Jousselme and S. Campidelli, ChemElectroChem, 2018, 5, 1732-1737.
Single photon emission from graphene quantum dots at room temperature, S. Zhao, J. Lavie, L. Rondin, L. Orcin-Chaix, C. Diederichs, P. Roussignol, Y. Chassagneux, C. Voisin, K. Müllen, A. Narita, S. Campidelli, and J.S. Lauret, Nat. Commun., 2018, 9, 3470.
Single-Walled Carbon Nanotube/Polystyrene Core-Shell Hybrids: Synthesis and Photoluminescence Properties, L. Orcin-Chaix, G. Trippé-Allard, C. Voisin, V. Derycke, J.-S. Lauret and S. Campidelli, J. Mater. Chem. C, 2018, 6, 4786-4792.
2017
Properties of Functionalized Carbon Nanotubes and Their Interaction with a Metallic Substrate Investigated by Scanning Tunneling Microscopy, V. D. Pham, V. Repain, C. Chacon, A. Bellec, Y. Girard, S. Rousset, S. Campidelli, J.-S. Lauret, C. Voisin, M. Terrones, M. C. dos Santos, and J. Lagoute, J. Phys. Chem. C, 2017, 121, 24264-24271.
Davydov splitting and self-organization in a porphyrin layer noncovalently attached to single wall carbon nanotubes, G. Delport, F. Vialla, C. Roquelet, S. Campidelli, C. Voisin and J.-S. Lauret, Nano Lett., 2017, 17, 6778-6782.
Optical Investigation of On-Surface Synthesized Armchair Graphene Nanoribbons, S. Zhao, G. Borin Barin, L. Rondin, C. Raynaud, A. Fairbrother, T. Dumslaff, S. Campidelli, K. Müllen, A. Narita, C. Voisin, P. Ruffieux, R. Fasel, and J.-S. Lauret, Phys. Status Solidi B, 2017, 254, 1700223.
Ecocatalyzed Suzuki cross coupling of heteroaryl compounds, G. Clavé, F. Pellissier, S. Campidelli and C. Grison, Green Chem., 2017, 19, 4093-4103.
Self-assembly of Porphyrin-DNA Hybrids into Large Flat Nanostructures, G. Chatelain, G. Clavé, C. Saint-Pierre, D. Gasparutto and S. Campidelli, Org. Biomol. Chem., 2017, 15, 6257-6263.
Electronic transport of MoS2 mono-layered flakes investigated by scanning electrochemical microscopy, O. Henrotte, T. Bottein, H. Casademont, K. Jaouen, T. Bourgeteau, S. Campidelli, V. Derycke, B. Jousselme, R. Cornut, ChemPhysChem, 2017, 18, 2777-2781.
Backside Absorbing Layer Microscopy: Watching Graphene Chemistry,
S. Campidelli, R. Abou Khachfe, C. Amra, M. Zerrad, R. Cornut, V. Derycke, D. Ausserré, Sci. Adv., 2017, 3, e1601724.
Fluorescence from graphene nanoribbons with defined structure,
S. Zhao, L. Rondin, G. Delport, C. Voisin, U. Beser, Y. Hu, X. Feng, K. Müllen, A. Narita, S. Campidelli and J.-S. Lauret, Carbon, 2017, 119, 235-240.
Controlling the kinetics of the noncovalent functionalization of carbon nanotubes using sub-cmc dilutions in a co-surfactant environment,
G. Delport, L. Orcin-Chaix, S. Campidelli, C. Voisin and J.-S. Lauret, Nanoscale, 2017, 9, 2646-2651.
Inkjet Printing NiO-Based p-Type Dye-Sensitized Solar Cells,
R. Brisse, R. Faddoul, T. Bourgeteau, D. Tondelier, J. Leroy, S. Campidelli, T. Berthelot, B. Geffroy, and B. Jousselme, ACS. Appl. Mater. Interfaces, 2017, 9, 2369-2377.
2016
Cofactor-specific Covalent Anchoring of Cytochrome b562 on Single-walled Carbon Nanotube by Click Chemistry,
A. Onoda, N. Inoue, S. Campidelli, T. Hayashi, RSC Adv. 2016, 6, 65936-65940.
Covalently-Functionalized Carbon Nanotubes as Stable Cathode Materials of Lithium/Organic Batteries,
G. Charrier, A. Desrues, C. Barchasz, J. Leroy, R. Cornut, B. Jousselme, S. Campidelli, J. Mater. Chem. A, 2016, 4, 15036-15040.
Thermodynamic study of non-covalent functionalization of surfactant suspended graphene nanosheets with porphyrin molecules,
G. Delport, F. Vialla, S. Campidelli, C. Voisin, J. S. Lauret, Phys. Status Solidi B, 2016, 253, 2373-2376.
Synthesis and self-assembly properties of fullerene/porphyrin-phthalocyanine and fullerene/bis-phthalocyanine triads,
K.-H. Le Ho, B. Jousselme and S. Campidelli, J. Porphyr. Phthalocyanines, 2016, 20, 1142-1147.
All solution-processed organic photocathodes with increased efficiency and stability via the tuning of the hole-extracting layer,
T. Bourgeteau, D. Tondelier, B. Geffroy, R. Brisse, S. Campidelli, R. Cornut and B. Jousselme, J. Mater. Chem. A, 2016, 4, 4831-4839.
Signature of gate-tunable magnetism in graphene grafted with Pt-porphyrins,
C. Li, K. Komatsu, S. Bertrand, G. Clavé, S. Campidelli, A. Filoramo, S. Guéron and H. Bouchiat, Phys. Rev. B, 2016, 93, 045403.
2015
Trapping Nanostructures on Surfaces through Weak Interactions,
V. Rauch, Y. Kikkawa, M. Koepf, I. Hijazi, J. A. Wytko, S. Campidelli, A. Goujon, M. Kanesato, J. Weiss, Chem. Eur. J. 2015, 21, 13437-13444.
1D Molecular Crystal of Phthalocyanine Confined into Single-Walled Carbon Nanotubes,
L. Alvarez, F. Fall, A. Belhboub, R. Le Parc, Y. Almadori, R. Arenal, R. Aznar, P. Dieudonné-George, P. Hermet, A. Rahmani, B. Jousselme, S. Campidelli, J. Cambedouzou, T. Saito, J.-L. Bantignies, J. Phys. Chem. C 2015, 119, 5203-5210.
Versatile Wafer-Scale Technique for the Formation of Ultrasmooth and Thickness-Controlled Graphene Oxide Films Based on Very Large Flakes,
J. Azevedo, S. Campidelli, D. He, R. Cornut, S. Sorgues, J.-J. Benattar, C. Colbeau-Justin, V. Derycke, ACS. Appl. Mater. Interfaces, 2015, 7, 21270-21277
2014
New insights in the electronic transport and contact resistance in reduced graphene oxide based materials using Scanning Electrochemical Microscopy,
T. Bourgeteau, S. Le-Vot, M. Bertucchi, V. Derycke, B. Jousselme, S. Campidelli, R. Cornut, J. Phys. Chem. Lett. 2014, 5, 4162-4166.
Carbon Nanotube-Templated Synthesis of Covalent Porphyrin Network for Oxygen Reduction Reaction,
I. Hijazi, T. Bourgeteau, R. Cornut, A. Morozan, A. Filoramo, J. Leroy, V. Derycke, B. Jousselme, S. Campidelli, J. Am. Chem. Soc., 2014, 136, 6348-6354.
Localized Reduction of Graphene Oxide by Electrogenerated Naphthalene Radical Anions and Subsequent Diazonium Electrografting,
J. Azevedo, L. Fillaud, C. Bourdillon, J.-M. Noël, F. Kanoufi, B. Jousselme, V. Derycke, S. Campidelli, Renaud Cornut, J. Am. Chem. Soc., 2014, 136, 4833-4836.
Chromophore ordering by confinement into carbon nanotubes,
Y. Almadori, L. Alvarez, R. Le Parc, R. Aznar, F. Fossard, A. Loiseau, B. Jousselme, S. Campidelli, P. Hermet, A. Belhboub, A. Rahmani T. Saito, J-L Bantignies, J. Phys. Chem. C, 2014, 118, 19462–19468.
Synthesis and self-assembly properties of fulleropyrrolidine prepared by Prato reaction,
K.-H. Le Ho, S. Campidelli, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2014, 5, 025008.
Synthesis of a Multibranched Porphyrin-Oligonucleotide Scaffold for the Construction of DNA-Based Nano-Architectures,
G. Clavé, G. Chatelain, A. Filoramo, D. Gasparutto, C. Saint-Pierre, E. Le Cam, O. Piétrement, V. Guérineau, S. Campidelli, Org. Biomol. Chem., 2014, 2014, 12, 2778-2783.
2013
A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell,
T. Bourgeteau, D. Tondelier, B. Geffroy, R. Brisse, C. Laberty-Robert, S. Campidelli, R. De Bettignies, V. Artero, S. Palacin, B. Jousselme, Energy Environ. Sci., 2013, 6, 2706-2713.
Functionalization of Carbon Nanotubes through Polymerization in Micelles: A Bridge between the Covalent and Noncovalent Methods,
G. Clavé, G. Delport, C. Roquelet, J.-S. Lauret, E. Deleporte, F. Vialla, B. Langlois, R. Parret, C. Voisin, P. Roussignol, B. Jousselme, A. Gloter, O. Stephan, A. Filoramo, V. Derycke and S. Campidelli, Chem. Mater., 2013, 25, 2700-2707.
Host-Guest Complexation of [60]Fullerenes and Porphyrins Enabled by “Click Chemistry”,
K.-H. Le Ho, I. Hijazi, L. Rivier, C. Gautier, B. Jousselme, G. de Miguel, C. Romero-Nieto, D. M. Guldi, B. Heinrich, B. Donnio and S. Campidelli, Chem. Eur. J., 2013, 19, 11374-11381.
Contactless Surface Conductivity Mapping of Graphene Oxide Thin Films Deposited on Glass with Scanning Electrochemical Microscopy,
J. Azevedo, C. Bourdillon, V. Derycke, S. Campidelli, C. Lefrou and R. Cornut, Anal. Chem., 2013, 85, 1812-1818.
2012
Formation of Linear and Hyperbranched Porphyrin Polymers onto Carbon Nanotubes via CuAAC “Grafting from” Approach,
I. Hijazi, B. Jousselme, P. Jégou, A. Filoramo and S. Campidelli, J. Mater. Chem., 2012, 22, 20936-20942.
Relationship between polypyrrole morphology and electrochemical activity towards oxygen reduction reaction, A. Morozan, P. Jégou, S. Campidelli, S. Palacin and B. Jousselme, Chem. Commun., 2012, 48, 4627-4629.
Metal-Free Nitrogen-Containing Carbon Nanotubes Prepared from Triazole and Tetrazole Derivatives Show High Electrocatalytic Activity towards the Oxygen Reduction Reaction in Alkaline Media, A. Morozan, P. Jégou, M. Pinault, S. Campidelli, B. Jousselme and S. Palacin, ChemSusChem, 2012, 5, 647-651.
2011
Selective adsorption of proteins on single wall carbon nanotubes using protective surfactant,
A. Knyazev, L. Louise, M. Veber, D. Langevin, A. Filoramo, A. Prina-Mello and S. Campidelli, Chem. Eur. J., 2011, 17, 14663-14671.
Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction,
A. Morozan, S. Campidelli, A. Filoramo, B. Jousselme and S. Palacin, Carbon, 2011, 49, 4839-4847.
SWNT array resonant gate MOS transistor,
A. Arun, S. Campidelli, A. Filoramo, V. Derycke, P. Salet, A. M. Ionescu and M. F. Goffman, Nanotechnology, 2011, 22, 055204.
2010
Phthalocyanine-Pyrene Conjugates – a Powerful Approach Towards Carbon Nanotube Solar Cells,
J. Bartelmess, B. Ballesteros, G. de la Torre, D. Kiessling, S. Campidelli, M. Prato, T. Torres and D. M. Guldi, J. Am. Chem. Soc., 2010, 132, 16202.
Zn-Porphyrin/Zn-Phthalocyanine Dendron for SWNT Functionalisation,
K. H. Le Ho, L. Rivier, B. Jousselme, P. Jégou, A. Filoramo and S. Campidelli, Chem. Commun., 2010, 46, 8731.
Hierarchical functionalisation of single-wall carbon nanotubes with DNA through positively charged pyrene,
C.-L. Chung, C. Gautier, S. Campidelli and A. Filoramo, Chem. Commun., 2010, 46, 6539.
Diastereoisomerically Pure Fulleropyrrolidines as Chiral Platforms for the Design of Optically Active Liquid Crystals,
S. Campidelli, P. Bourgun, B. Guintchin, J. Furrer, H. Stoeckli-Evans, I. M. Saez, J. W. Goodby and R. Deschenaux, J. Am. Chem. Soc., 2010, 132, 3574.
2009 – 2008
Efficient Functionalization of Carbon Nanotubes with Porphyrin Dendrons via “Click Chemistry”,
T. Palacin, H. Le Khanh, B. Jousselme, P. Jegou, A. Filoramo, C. Ehli, D. M. Guldi and S. Campidelli, J. Am. Chem. Soc., 2009, 131, 15394.
Controlled Stability of Molecular Junctions,
D. Dulić, F. Pump, S. Campidelli, P. Lavie, G. Cuniberti and A. Filoramo, Angew. Chem. Int. Ed., 2009, 48, 8273.
Facile Decoration of Functionalized Single-Wall Carbon Nanotubes with Phthalocyanines via “Click Chemistry”,
S. Campidelli, B. Ballesteros, A. Filoramo, D. Díaz Díaz, G. de la Torre, T. Torres, G. M. A. Rahman, C. Ehli, D. Kiessling, F. Werner, V. Sgobba, D. M. Guldi, C. Cioffi, M. Prato, and J.-P. Bourgoin, J. Am. Chem. Soc., 2008, 130, 11503.
Adsorption of carbon nanotubes on active carbon microparticles,
S. Li, W. Wu, S. Campidelli, V. Sarnatskaïa, M. Prato, A. Tridon, A. Nikolaev, V. Nikolaev, A. Bianco, and E. Snezhkova, Carbon, 2008, 46, 1091.
Liquid-Crystalline [60]Fullerene-Peralkylated Ferrocene Dyad,
S. Campidelli, M. Séverac, D. Scanu, R. Deschenaux, E. Vázquez, D. Milic, M. Prato, F. Paolucci, G. M. A. Rahman and D. M. Guldi, J. Mater. Chem., 2008, 18, 1504.
Pyrene-Tetrathiafulvalene Supramolecular Assembly with Different Carbon Nanotubes,
C. Ehli, D. M. Guldi, M. Á. Herranz, N. Martín, S. Campidelli, and M. Prato, J. Mater. Chem., 2008, 18, 1498.
Macromolecular properties of cepacian in water and dimethylsulfoxide,
Y. Herasimenka, P. Cescutti, C. E. Sampaio Noguera, J. R. Ruggiero, R. Urbani, G. Impallomeni, F. Zanetti, S. Campidelli, M. Prato and R. Rizzo, Carbohydr. Res., 2008, 343, 81.
Immobilization of Oligoquinoline Chains on Single-Wall Carbon Nanotubes and their Optical Behaviour,
C. L. Chochos, A. A. Stefopoulos, S. Campidelli, M. Prato, V. G. Gregoriou and J. K. Kallitsis, Macromolecules, 2008, 41, 1825.
Spectroscopic Characterization of Photolytically Generated Radical Ion Pairs in Single Wall Carbon Nanotubes Bearing Surface-Immobilized Tetrathiafulvalenes,
M. A. Herranz, C. Ehli, S. Campidelli, M. Gutiérrez, G. L. Hug, K. Ohkubo, S. Fukuzumi, M. Prato, N. Martín and D. M. Guldi, J. Am. Chem. Soc., 2008, 130, 66.
2007
Interfacing Neurons with Carbon Nanotubes: Electrical Signal Transfer and Synaptic Stimulation in Cultured Brain Circuits,
A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro, H. Markram, M. Prato, L. Ballerini, J. Neurosci., 2007, 27, 6931.
Liquid-Crystalline Janus-Type Fullerodendrimers Displaying Tunable Smectic-Columnar Mesomorphism,
J. Lenoble, S. Campidelli, N. Maringa, B. Donnio, D.Guillon, N. Yevlampieva and R. Dechenaux, J. Am. Chem. Soc., 2007, 129, 9941.
Synthesis, Characterization and Photophysical Properties of a SWNT-Phthalocyanine Hybrid,
B. Ballesteros, S. Campidelli, G. de la Torre, C. Ehli, D. M. Guldi, M. Prato and T. Torres, Chem. Commun., 2007, 2950.
Single wall carbon nanotube porphyrin nanoconjugates,
C. Ehli, S. Campidelli, F. G. Brunetti, M. Prato and D. M. Guldi, J. Porphyr. Phthalocyanines, 2007, 11, 442.
Synthesis, Characterization and Photoinduced Electron Transfer in Functionalized Single Wall Carbon Nanohorns,
C. Cioffi, S. Campidelli, C. Sooambar, M. Marcaccio, G. Marcolongo, M. Meneghetti, D. Paolucci, F. Paolucci, C. Ehli, G. M. A. Rahman, V. Sgobba, D. M. Guldi and M. Prato, J. Am. Chem. Soc., 2007, 129, 3938.
2006
[60]Fullerene-Porphyrin Dyad bearing a Liquid-Crystalline Dendrimer, S. Campidelli, R. Deschenaux, A. Swartz, G. M. A. Rahman, D. M. Guldi, D. Milic, E. Vázquez and M. Prato, Photochem. Photobiol. Sci., 2006, 5, 1137.
An optically-active liquid-crystalline hexa-adduct of [60]fullerene which displays supramolecular helical organization,
S. Campidelli, T. Brandmüller, A. Hirsch, I. M. Saez, J. W. Goodby and R. Deschenaux, Chem. Commun., 2006, 4282.
Dendrimer-Functionalized Single Wall Carbon Nanotubes: Synthesis, Characterization and Photoinduced Electron Transfer,
S. Campidelli, C. Sooambar, E. Lozano-Diz, C. Ehli, D. M. Guldi and M. Prato, J. Am. Chem. Soc., 2006, 128, 12544.
Supramolecular Assemblies of Different Carbon Nanotubes for Photoconversion Processes,
V. Sgobba, G. M. A. Rahman, D. M. Guldi, N. Jux, S. Campidelli and M. Prato, Adv. Mater., 2006, 18, 2264.
Interactions in Single Wall Carbon Nanotubes/Pyrene/Porphyrin Nanohybrids,
C. Ehli, G. M. A. Rahman, N. Jux, D. Balbinot, D. M. Guldi, F. Paolucci, M. Marcaccio, D. Paolucci, M. Melle-Franco, F. Zerbetto, S. Campidelli and M. Prato, J. Am. Chem. Soc., 2006, 128, 11222.
Liquid-Crystalline Bis-Adducts of [60]Fullerene,
S. Campidelli, E. Vázquez, D. Milic, J. Lenoble, C. Atienza Castellanos, G. Sarova, D. M. Guldi, R. Deschenaux and M. Prato, J. Org. Chem., 2006, 71, 7603.
Encoding calamitic mesomorphism in thermotropic lanthanidomesogens,
E. Terazzi, B. Bocquet, S. Campidelli, B. Donnio, D. Guillon, R. Deschenaux, and C. Piguet, Chem. Commun., 2006, 2922.
Microscopic and Spectroscopic Characterization of Paintbrush-like Single-walled Carbon Nanotubes,
D. Bonifazi, C. Nacci, R. Marega, S. Campidelli, G. Ceballos, S. Modesti, M. Meneghetti and M. Prato, Nano Lett., 2006, 6, 1408.
Functionalisation of Carbon Nanohorns,
C. Cioffi, S. Campidelli, F. G. Brunetti, M. Meneghetti and M. Prato, Chem. Commun., 2006, 2129.
Liquid-Crystalline Fullerodendrimers which Display Columnar Phases,
J. Lenoble, N. Maringa, S. Campidelli, B. Donnio, D. Guillon and R. Deschenaux, Org. Lett., 2006, 8, 1851.
Control over Electron Transfer in Tetrathiafulvalene modified Single-Walled Carbon Nanotubes,
M. Á. Herranz, N. Martín, S. Campidelli, M. Prato, G. Brehm and D. M. Guldi, Angew. Chem., Int. Ed., 2006, 45, 4478.
Supramolecular Hybrids of [60]Fullerene and Single-Wall Carbon Nanotubes,
D. M. Guldi, E. Menna, M. Maggini, M. Marcaccio, D. Paolucci, F. Paolucci, S. Campidelli, M. Prato, G. M. A. Rahman and S. Schergna, Chem. Eur. J., 2006, 12, 3975.
[60]Fullerene-Pyrrolidine-N-oxides,
P. Brough, C. Klumpp, A. Bianco, S. Campidelli and M. Prato, J. Org. Chem., 2006, 71, 2014.
Versatile coordination chemistry towards multifunctional carbon nanotube nanohybrids,
D. M. Guldi, G. M. A. Rahman, S. Qin, M. Tchoul, W. T. Ford, M. Marcaccio, D. Paolucci, F. Paolucci, S. Campidelli and M. Prato, Chem. Eur. J., 2006, 12, 2152.
Dendritic liquid-crystalline fullerene-ferrocene dyads,
S. Campidelli, L. Pérez, J. Rodríguez-López, J. Barberá, F. Langa and R. Deschenaux, Tetrahedron, 2006, 62, 2115.
Electronically interacting single wall carbon nanotube-porphyrin nanohybrids,
G. M. A. Rahman, D. M. Guldi, S. Campidelli and M. Prato, J. Mater. Chem., 2006, 16, 62.
2005 – 2001
Supramolecular fullerene materials: dendritic liquid-crystalline fulleropyrrolidines,
S. Campidelli, J. Lenoble, J. Barberá, F. Paolucci, M. Marcaccio, D. Paolucci and R. Deschenaux, Macromolecules, 2005, 38, 7915.
Liquid-crystalline fullerene-ferrocene dyads,
S. Campidelli, E. Vàzquez, D. Millic, M. Prato, J. Barberà, D. M. Guldi, M. Marcaccio, D. Paolucci, F. Paolucci and R. Deschenaux, J. Mater. Chem., 2004, 14, 1266.
Functional polypedes-chiral nematic fullerenes,
S. Campidelli, C. Eng, I. M. Saez, J. W. Goodby and R. Deschenaux, Chem. Commun., 2003, 1520.
Liquid-crystalline fullerene-oligophenylenevinylene conjugates,
S. Campidelli, R. Deschenaux, J.-F. Eckert, D. Guillon and J.-F. Nierengarten, Chem. Commun., 2002, 656.
Liquid-crystalline fulleropyrrolidines, Nematic phase formation in suspensions of graphene oxide, N. Fresneau and S. Campidelli in “Liquid Crystals with Nano and Microparticles”, Eds. J. P. F. Lagerwall G. Scalia, World Scientific, 2016, pp 769-787 Supramolecular Chemistry of Carbon Nanotubes, G. Gavrel, B. Jousselme, A. Filoramo and S. Campidelli in Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes, Topics in Current Chemistry, Eds M. Marcaccio, F. Paolucci, Spinger Verlag, 2014, pp 95-126 New Insigths on Photo-Active Molecules Within Host Carbon Nanotubes, Supramolecular Chemistry of Carbon Nanotubes, Carbon Nanotubes as Electrical Interfaces to Neurons Efficient covalent functionalisation of carbon nanotubes: the use of “click chemistry”, G. Clavé and S. Campidelli, Chem. Sci., 2011, 2, 1887-1896. Functionalized Carbon Nanotubes:(X-CNTs), Click Chemistry for Carbon Nanotubes Functionalization, Functionalization of Carbon Nanotubes for Nanoelectronic and Photovoltaic Applications, Recent Advances in Molecular Electronics Based on Carbon Nanotubes, Nanomaterials for Neural Interfaces, Organic functionalisation and characterisation of single-walled carbon nanotubes, Carbon nanotube chemistry and assembly for electronic devices, Separation of Metallic and Semiconducting Single Wall Carbon Nanotubes via Covalent Functionalization, Fullerene for Material Science, Functionalization of CNT: Synthesis and applications in photovoltaics and biology,
S. Campidelli and R. Deschenaux, Book Chapter and Review
L. Alvarez, Y. Almadori, S. Mariot, R. Aznar, R. Arenal, T. Michel, R. Le Parc, P. Dieudonné, B. Jousselme, S. Campidelli and J.-L. Bantignies, J. Nanoelectron. Optoelectron., 2013, 8, 28-35.
B. Jousselme, A. Filoramo and S. Campidelli in Supramolecular Chemistry of Fullerenes and Carbon Nanotubes, Eds N. Martín and J.-F. Nierengarten, Wiley-VCH, 2012, pp 263-300.
M. Giugliano, L. Gambazzi, L. Ballerini, M. Prato and S. Campidelli in Nanotechnology for Biology and Medicine, Eds G. A. Silva and V. Purpura, Springer, 2012, pp 187-207.
S. Campidelli, S. S. Wong and M. Prato in Carbon Meta-Nanotubes, Ed. M. Monthioux, John Wiley & Sons, Ltd, 2011, pp 113-161.
S. Campidelli, Curr. Org. Chem., 2011, 15, 1151.
S. Campidelli and M. Prato in Chemistry of Nanocarbons, Eds T. Akasaka, F. Wudl and S. Nagase, John Wiley & Sons, Ltd, 2010, pp333-363
J.-P. Bourgoin, S. Campidelli, P. Chenevier, V. Derycke, A. Filoramo, M. F. Goffman, Chimia, 2010, 64, 414.
N. A. Kotov, J. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, L. Ballerini, Adv. Mater., 2009, 21, 3970.
P. Singh, S. Campidelli, S. Giordani, D. Bonifazi, A. Bianco and M. Prato, Chem. Soc. Rev., 2009, 38, 2214.
V. Derycke, S. Auvray, J. Borghetti, C.-L. Chung, R. Lefèvre, A. Lopez-Bezanilla, K. Nguyen, G. Robert, G. Schmidt, C. Anghel, N. Chimot, S. Lyonnais, S. Streiff, S. Campidelli, P. Chenevier, A. Filoramo, M. F. Goffman, L. Goux-Capes, S. Latil, X. Blasé, S. Roche, J.-P. Bourgoin, C. R. Physique, 2009, 10, 330.
S. Campidelli, M. Meneghetti and M. Prato, Small, 2007, 3, 1672.
S. Campidelli, A. Mateo-Alonso and M. Prato in Fullerenes: Principles and Applications, Eds F. Langa and J.-F. Nierengarten, RSC Publishing, 2007, pp 191-220.
S. Campidelli, C. Klumpp, A. Bianco, D. M. Guldi and M. Prato, J. Phys. Org. Chem., 2006, 19, 531.