| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST | English
Univ. Paris-Saclay

Faits marquants scientifiques 2022

21 septembre 2022

Le développement de structures photoniques performantes : filtres, miroir, élément dispersif, guide optique…, nécessite de savoir réaliser des films minces présentant un fort indice de réfraction et une faible absorption optique sur la plus large gamme spectrale possible. Ces structures sont usuellement composées d'une alternance de couches minces présentant un fort contraste d‘indices optiques.

C'est dans ce cadre que s'inscrit le travail fondamental, réalisé au laboratoire CIMAP dans l'équipe NIMPH, via une collaboration internationale avec l’université de l’Ohio (USA), sur la croissance de films minces de Nb2O5 non-dopé et dopé par des ions Terbium Tb3+. Les couches minces sont déposées par pulvérisation cathodique magnétron et leur étude a notamment permis de montrer les liens entre les propriétés optiques de ces films et leur structure.

18 août 2022

En utilisant les impulsions lumineuses ultracourtes du laser à électrons libres FERMI à Trieste (Italie), une large collaboration de physiciens à laquelle participe une équipe du LIDYL, a pu étudier pour la première fois dans le domaine de l'ultraviolet extrême (UVX), l’interaction cohérente entre atomes et photons, phénomène quantique prédit théoriquement par Rabi, dès 1937.

L'expérience met en évidence le couplage cohérent obtenu entre un système à 2 niveaux (atome d'hélium) et le champ électromagnétique, à une énergie de 23.7 eV. Ce résultat ouvre la voie à l’exploration de phénomènes cohérents dans ce domaine des très courtes longueurs d'onde et à une échelle de temps jamais atteinte.

08 juillet 2022

Douzième laboratoire commun de l'IRAMIS, créé en janvier 2020, le laboratoire commun NANOLITE, financé par l'Agence nationale de la recherche (ANR) et associant le CEA et l'entreprise Imagine Optic, développe des solutions originales de métrologie optique aux courtes longueurs d'onde.

La nouvelle source laser construite en commun est opérationnelle, notamment pour développer des capteurs optiques. NANOLITE est implanté dans les locaux du Laboratoire interactions, dynamiques et lasers (LIDYL) du CEA-Iramis, sur le site l'Orme des Merisiers (CEA Paris-Saclay).

 

07 juillet 2022

Le LIDYL du CEA-Iramis et le Lawrence Berkeley National Lab, sont finalistes pour le prix Gordon Bell, prix décerné chaque année par l'Association for Computing Machinery - ACM, pour leurs recherches collaboratives, en partenariat avec le grand équipement national de calcul intensif - GENCI, le RIKEN, Center for Computational Science (Japon), et les sociétés ATOS et Arm. Le prix sera décerné en novembre 2022 lors de la prochaine conférence SuperComputing, à Dallas (USA).

The LIDYL of CEA-Iramis together with the Lawrence Berkeley National Lab, are among the finalists for the Gordon Bell Prize, awarded each year by the Association for Computing Machinery - ACM, for their collaborative research, in partnership with the French National High-Performance Computing Facility - GENCI, the RIKEN Center for Computational Science (Japan) and the ATOS and Arm companies. The prize will be awarded in November 2022 at the next SuperComputing conference in Dallas (USA).

29 mars 2022

En 1905, l’interprétation théorique de l’effet photoélectrique (émission d’un électron suite à l’absorption d’un quantum de lumière, le photon) proposée par Einstein allait révolutionner la physique. Du fait de son extrême rapidité, ce processus fondamental a longtemps été considéré comme instantané. Ce n’est que depuis une dizaine d’années que le développement des sources de lumière ultrabrève et de la métrologie attoseconde* (1 as= 10-18 s) a permis d’accéder à l’aspect temporel de ce processus ultrarapide, souvent au détriment de l’aspect spatial.

Une expérience menée sur la plateforme ATTOLab au CEA Paris-Saclay par une collaboration française composée de chercheurs du CEA, du CNRS, de l'Université Paris-Saclay, de Sorbonne Université et de l'Université Lyon 1 a permis pour la première fois de reconstruire le film tridimensionnel d'un processus de photoémission, au niveau atomique et à l’échelle attoseconde.

La photoémission étant par ailleurs à la base des méthodes d'analyse spectroscopique parmi les plus fines, ces travaux ouvrent la voie à une compréhension approfondie des effets de corrélations électroniques dans la matière, depuis les atomes et les molécules jusqu’aux solides, et à l’œuvre notamment au cours des réactions chimiques.

25 février 2022

Les nanostructures magnétiques sont essentielles pour le stockage de données (MRAM, disque dur de haute densité) ou encore au sein de capteurs et actionneurs magnétiques. Pour sonder ce magnétisme local, le dichroïsme circulaire magnétique (MCD) et l'effet Kerr magnétique (MOKE) reposent tous deux sur l'absorption différentielle de la lumière selon le sens de sa polarisation circulaire (associée à des photons d'orientation de spin opposée). Cependant, la connaissance fine de leurs dynamiques à l'échelle de la femtoseconde reste encore largement à explorer.

La lumière peut aussi porter un second type de moment angulaire, dit "orbital", associé à des ondes électromagnétiques dont le front d'onde est hélicoïdal. Il a été montré qu'un dichroïsme hélicoïdal magnétique existe (réflexion différentielle de lumière portant des moments angulaires orbitaux opposés) et présente de multiples avantages. Cette méthode peut en particulier devenir une méthode de choix pour les études résolues en temps de structures magnétiques telles que les skyrmions ou les vortex magnétiques, dont la taille caractéristique (~1 µm) correspond à celle du front d'onde en hélice.

26 janvier 2022

L'exploration des propriétés du vide, aujourd'hui décrites par l’électrodynamique quantique (QED), reste un des objectifs de la physique fondamentale contemporaine. Il est en particulier prédit que pour un éclairement laser au-delà de la limite de Schwinger (> 4.7x1029 W/cm2), il est possible de séparer les paires électron-trou virtuelles résultant des fluctuations du vide.

Pour atteindre ce seuil, les physiciens des lasers ultra-intense, dont ceux du LIDYL, cherchent à comprimer spatialement et temporellement des impulsions lasers. Pour conduire cette recherche, il est aussi indispensable de savoir caractériser ces impulsions ultra courtes dans le domaine femto, voire attoseconde, et focalisées sur des distances de l'ordre du nanomètre. L'équipe PHI du LIDYL présente une méthode originale de caractérisation spatio-temporelle de ces impulsions laser ultra-intenses, basée sur des techniques de ptychographie*.

* Du grec "ptycho", replier et "graphia", l'écriture. La technique consiste en effet à produire des images en balayant l'objet à observer avec un fort recouvrement entre chaque balayage.

26 janvier 2022

Depuis des siècles, les physiciens s’interrogent sur la nature du vide, c’est à dire sur ce qu’il reste, quand on a tout enlevé…Une manière d’envisager ce problème est de tenter d'ouvrir le vide, un peu comme un objet dont on a envie de comprendre le fonctionnement.

L’électrodynamique quantique (QED) fournit l’image d’un ensemble de paires électrons-positrons chacune en interaction virtuelle dans le sens où leur durée de vie est infiniment brève. Dans les années 50, le physicien Julian Schwinger prédit qu'au-delà d'un éclairement lumineux supérieurs à 4.7 1029 W/cm2, il devient possible de séparer ces paires de particules et ainsi commencer à "ouvrir" le vide. Ce seuil d'éclairement est sept ordres de grandeur au-delà des records atteints avec les lasers femtoseconde les plus puissants actuels.

De nombreuses recherches poursuivies par les physiciens des lasers ultra-intenses visent à atteindre ce seuil en ajoutant un étage de compression spatio-temporelle supplémentaire à ces impulsions lasers. C'est l'enjeu des recherches de l'équipe "PHI - Physique à Haute Intensité" du LIDYL, qui montre expérimentalement que la réflexion des impulsions lasers sur un miroir plasma permet d'améliorer les records d'éclairement obtenus jusqu'à présent.

01 décembre 2022

Déterminer le mécanisme à l'origine de la supraconductivité à haute température critique (Tc), découverte en 1986 dans des oxydes de cuivre , reste un défi majeur en physique au XXIe siècle. Dans ces matériaux, les corrélations entre les électrons sont telles qu’elles engendrent des propriétés électroniques et magnétiques totalement inédites, au nombre desquelles la mystérieuse phase de pseudo-gap (présentant une ouverture partielle d'un gap dans la structure électronique), de laquelle semble émerger la supraconductivité.

Une partie du voile entourant ce nouvel état de la matière vient d’être levé par la diffraction de neutrons polarisés, qui révèle au sein de la phase pseudo-gap l’existence d’une structure électronique originale, présentant des boucles de courant avec un ordre spatial complexe.

28 novembre 2022

La Source Européenne de Spallation ("European Spallation Source" ou ESS), actuellement en construction à Lund en Suède, sera à l’horizon 2027 la source de neutrons la plus puissante au monde au service de la recherche sur les matériaux et les Sciences de la vie. Ce projet est piloté par un consortium international dont la France est partenaire et repose sur un modèle de contributions où les différents pays fournissent équipements et expertises pour l’ensemble de l’installation. Le CEA participe, entre autres, à l’accélérateur de protons ainsi qu’au design et à la construction de plusieurs spectromètres de neutrons sur lesquels, à terme, des utilisateurs de tous pays viendront réaliser leurs expériences.

Le spectromètre DREAM, construit en partenariat entre le Laboratoire Léon Brillouin (DRF/IRAMIS/LLB) et le Forschungzentrum Jülich (FZJ, Allemagne) pour un montant de 12 M€, sera un des premiers instruments mis en service. Il permettra des mesures de diffraction sur des échantillons de poudres ou monocristallins avec un flux de neutrons et une gamme de résolution inégalés et offrira un large choix de conditions de mesures (température, pression…).

14 novembre 2022

Molécules clés du vivant, les polymères d'acides nucléiques peuvent se présenter sous la forme d'une chaine moléculaire unique ou sous une forme multichaines (tel que la double hélice de l'ADN), qui adoptent une grande variété de conformations, pouvant comprendre des hélices simples ou doubles, des boucles, des pseudo-nœuds des structures en duplexes, triplexes ou quadruplexes. Ces structures ont toutes des rôles cruciaux et bien spécifiques en biologie, et leur rôle va de la réplication de l’ADN en vue de la transmission de l’information génétique, à la régulation de l'expression des gènes, en passant par le contrôle de la stabilité du génome.

Afin d'améliorer l'analyse de la conformation de ces macromolécules, une nouvelle base de données a été créée dans le cadre d'une approche scientifique concertée : des chercheurs de Pologne, de France et des États-Unis ont uni leurs efforts pour collecter et normaliser les spectres de dichroïsme circulaire (CD) d’acides nucléiques, ADN et ARN. Plus de 150 spectres, tirés de la littérature, ou récemment obtenus sur la ligne de lumière DISCO, ont été rassemblés dans cette base structurée "NACDDB - Nucleic Acid Circular Dichroism Database", et rendus ainsi accessibles au public le plus large.

 

24 août 2022

Le rôle régulateur de la protéine Hfq, protéine bactérienne notamment trouvée chez Escherichia coli, est attribué principalement à sa fonction d'ARN-chaperon, facilitant les interactions entre ARNs. La protéine est aussi impliquée dans la structuration et la compaction de l’ADN.

Une large collaboration internationale a étudié par diverses techniques d'imagerie et de spectroscopie, en particulier sur synchrotron, les complexes formés par la protéine amyloïde Hfq et l'ADN simple brin. Il est ainsi montré que la protéine Hfq peut jouer un rôle dans la recombinaison génétique et la réplication.

24 mai 2022

Une expérience proposée par des chercheurs de l'Université de l’Académie des sciences chinoise de Pékin en collaboration avec le CEA/Irig/D-Phy/MEM et le LLB révèle que les fluctuations du spin dans un supraconducteur à base de fer ont une direction privilégiée, ce qui suggère un mécanisme potentiel pour la supraconductivité dans ces matériaux.

 

11 mai 2022

Du fait même de sa structure moléculaire, l'eau présente un très grand nombre d’anomalies physico-chimiques par rapport à un liquide ordinaire avec un diagramme de phases complexe.  On peut par exemple mettre le liquide en surfusion jusqu’à 235 K (-38°c) à pression atmosphérique, mais sa cristallisation reste inévitable, entrainant une expansion du volume à l'origine de multiples problèmes. 

Par l'ajout de glycérol, il est possible de préserver l'état liquide à des températures bien plus basses et d'en observer les propriétés structurales en ralentissant considérablement la cinétique de cristallisation. Au-delà de l'intérêt fondamental sur la compréhension de la dynamique de l'eau surfondue, ce type d'étude présente un grand intérêt pour les applications en cryo-préservation biologique et contribuer à en définir les meilleures conditions thermodynamiques de mise en œuvre.

Les expériences réalisées, notamment par diffusion de neutrons polarisés avec la possibilité de distinguer les diverses contributions moléculaires, montrent que même au sein la phase vitreuse d’une solution eau-glycérol, l’eau pure finit par cristalliser.  La description approfondie des phases obtenues permet ensuite d'infirmer un modèle théorique largement cité de l’eau, proposant l'existence d'une nouvelle phase à basse température, composée de 2 liquides de densité différente, associée à un nouveau point critique.

 

27 février 2022

L'objectif visé dans la construction de la réalisation de sources compactes de neutrons à base d’accélérateurs à fort courant est de permettre de réaliser, sur ces sources, des expériences de diffusion de neutrons, avec pratiquement la même qualité que celles réalisées auprès des lignes neutrons issues de réacteurs de recherche de type Orphée*.

Ces sources sont réalisées à partir d'un faisceau de protons de moyenne énergie (3-50 MeV) et haut courant (~ 100 mA) frappant une cible d’un matériau léger comme le béryllium, qui émet alors des neutrons. Pour être utilisable de manière routinière, la cible doit pouvoir résister sur de longues durées à une forte irradiation sans perte de performance.

Les équipes du LLB et de l'IRFU réunies ont réalisé une cible béryllium implantée en sortie de l'injecteur de protons à haute intensité - IPHI (3 MeV) à Saclay. Ils montrent qu'avec ce dispositif il est possible d'obtenir l'intensité de neutrons nécessaire pour réaliser une expérience de diffraction dans un temps raisonnable, démontrant la compétitivité d'une telle source pour la diffusion de neutrons par rapport aux réacteurs nucléaires actuels de petite et moyenne puissance.

*Ancien réacteur de recherche de Saclay, aujourd'hui fermé.

08 février 2022

Les aimants mono-moléculaires suscitent une attention scientifique croissante et ceci depuis trois décennies. Ils diffèrent des aimants métalliques conventionnels par le fait que l'ordre magnétique ne résulte pas d'un ordre à longue distance, mais de la capacité d'alignement de chaque molécule individuelle. L'un des principaux défis dans ce domaine réside dans le contrôle structurel de l'anisotropie magnétique moléculaire qui doit être uni-axiale. Dans cette optique, la technique de diffraction de neutrons polarisés (DNP) développée au laboratoire Léon Brillouin (LLB) offre la possibilité unique de mesurer l’amplitude du moment magnétique et la direction des principaux axes d'anisotropie magnétique d’un ion magnétique par rapport à l'orientation des molécules.

Dans le but d’améliorer les caractéristiques des aimants mono-moléculaires, deux nouveaux complexes iso-structuraux à base de Dy3+ et Ho3+ ont été synthétisés. Ils présentent une forte anisotropie magnétique, avec des barrières de relaxation magnétique respective de 600 K et 270 K. Les mesures réalisées au LLB fournissent la première preuve expérimentale que le composé Dy a une anisotropie magnétique quasi-uniaxiale avec une contribution transverse nulle, alors qu'elle est significative pour le composé Ho, ce qui peut être attribué à l'interaction moins favorable du champ cristallin avec la distribution de charge de l’ion Ho.

 

07 décembre 2022

Un défi constant de la recherche dans le domaine de la santé, est le développement de techniques de diagnostic précoce, rapides, sensibles, transportables au chevet du patient, tout en étant peu coûteuses. L'Organisation Mondiale de la Santé (OMS) a ainsi défini les critères ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable to end-users) que les tests de diagnostic terrain doivent remplir. La pandémie mondiale de COVID-19 a également démontré la nécessité de tels tests.

Les capteurs à magnétorésistance géante (GMR) [1] qui ont été développés pour une grande variété d'applications (industrie automobile, automatisme, informatique etc.), présentent également un réel potentiel dans le domaine de la santé, notamment pour le développement de dispositifs de diagnostic précoce sur les lieux de soins. Le principe de la technique repose sur l'utilisation de particules magnétiques fonctionnalisées par des anticorps monoclonaux dirigés contre les cibles d'intérêt (figure 1A). La détection dynamique des objets ainsi marqués est réalisée à l'aide de capteurs GMR, développés au CEA-SPEC. La sensibilité de ces capteurs permet le comptage individuel des objets biologiques (ici des cellules) magnétiquement marqués.

Après avoir validé la méthode sur un premier appareil, la réalisation d'un second dispositif à "double détection" permet d'atteindre une plus grande sélectivité, en réduisant fortement les faux-positifs.

22 novembre 2022

En lui décernant le prix Irène Joliot-Curie 2022, l’Académie des sciences nomme Bérengère Dubrulle, Directrice de recherche CNRS au Service de physique de l'état condensé (SPEC, CEA/CNRS/Univ. Paris-Saclay - UMR 3680) "Femme scientifique de l’année".

Voir le communiqué du ministère de la Recherche - Plaquette de l'Académie des Sciences.

 

03 août 2022

Une collaboration de chercheurs du SPEC et du LMFL explorent l’origine de l’irréversibilité de la turbulence grâce à un nouveau dispositif expérimental à grande échelle : Giant Von Kármán - GVK, unique par ses dimensions.

Le dispositif permet de mettre en évidence la corrélation entre les zones de forte dispersion des trajectoires du fluide, signe d'irréversibilité, et des zones hautement dissipatives.

11 juillet 2022

English version.

Savoir manipuler à l’échelle nanométrique, un spin unique, en tant qu'objet porteur d'information quantique, présente un enjeu technologique majeur, et reste encore aujourd'hui un sujet d'un grand intérêt fondamental. Un système composé de molécules magnétiques déposées sur une surface offre un banc d’essai unique pour traiter ce sujet, mais il est difficile, voire impossible, d’explorer expérimentalement les trop nombreuses pistes ouvertes, étant donné le nombre énorme de combinaisons molécule/surface possibles. C’est pourquoi la modélisation joue un rôle essentiel dans ce domaine.

Dans le cadre du projet H2020 FET-Open COSMICS, une collaboration entre l’Université Technique du Danemark (DTU), le CEMES CNRS de Toulouse et le CEA SPEC montre par des méthodes de calcul de structure électronique et de transport que la porphyrine de fer, déposée sur un substrat de graphène dopé par du bore, posséde des propriétés remarquables, pour en faire un dispositif de spintronique moléculaire que l'on peut piloter par la simple application d’une tension de grille. Ce dispositif mériterait ainsi d'être expérimentalement étudié.

03 juillet 2022
La matière active est composée d'entités individuelles convertissant de l'énergie en travail, ce qui entraine leur mise en mouvement, et leur permet de s'organiser spontanément du fait de leurs interactions mutuelles. De nombreux systèmes vivants peuvent être vus sous cet angle, mais aussi, de plus en plus, des ensembles de microparticules actives synthétiques ou extraites de cellules. L’approche théorique de la matière active ne bénéficie pas des résultats généraux valides à l’équilibre thermodynamique, mais elle en garde les thèmes principaux : symétries, lois de conservation, et transitions de phase sont déterminantes, mais les propriétés émergentes de la matière active sont bien souvent nouvelles, offrant de nouvelles voies d’auto-organisation dynamique.

Dans un article récent publié dans PNAS, Hugues Chaté (IRAMIS/SPEC), Xia-qing Shi et le groupe de Tian Hui Zhang (Université de Suzhou) montrent qu'un système de colloïdes actifs juste sous critique (i.e. près du seuil de leur mise en mouvement) présente de nouveaux types de dynamique collective auto-organisée spectaculaires, comme des tourbillons auto-organisés isolés composés de milliers de particules.

11 mars 2022
​Une collaboration menée par le LSCE (CEA-CNRS-UVSQ), avec l'Iramis (SPEC/SPHYNX), applique pour la première fois une technique d'apprentissage automatique utilisée en linguistique à des bulletins météorologiques quotidiens couvrant 70 années. La voie est désormais ouverte à des analyses climatologiques hors d'atteinte pour les experts humains ! 
25 janvier 2022
Parmi les propriétés extraordinaires du graphène, il existe une anomalie magnétique géante prédite depuis les années 1950's et encore jamais mesurée directement. En contrôlant un feuillet de graphène presque sans défaut avec une tension électrostatique, et en utilisant des capteurs à magnétorésistance géante (GMR) ultrasensibles concus par l'équipe LNO du SPEC, des physiciennes et des physiciens ont pour la première fois mis en évidence expérimentalement cette singularité magnétique.

 

29 septembre 2022

Face au défi mondial de la transition énergétique et de l’indépendance énergétique, d'intenses recherches académiques et industrielles sont poursuivies sur différents dispositifs de stockage d'énergie, dont les batteries et les super-condensateurs, pour atteindre une production d'électricité décarbonée.

Dans la conception d'une batterie, le choix de la nature des électrodes et de l'électrolyte est déterminant. Une collaboration de chercheurs de l'UMR Nimbe, du CEA-Liten et de l'IMN de Nantes proposent une méthode de criblage rapide par radiolyse d'un électrolyte, selon les différents additifs ajoutés. Il est montré que le suivi sur quelques heures de la quantité de H2 émise est un bon marqueur de la dégradation de l'électrolyte, et donc de la performance à long terme de la batterie.

08 juin 2022

Du fait de leurs propriétés optiques dans le domaine visible, les nanoparticules d’or (Au-NPs) ont de nombreuses applications dans multiples domaines et plusieurs entreprises produisent et commercialisent aujourd'hui des Au-NPs, en particulier aux USA et en Asie.

Ce secteur d'activité en plein essor, a aussi été renforcé par la pandémie mondiale de covid-19, avec le développement à grande échelle des tests rapides POCT (Point-of-Care-Test) que nous avons tous utilisés, où le signal coloré est lié à la présence d'or colloïdal*.

Le NIMBE/LEDNA synthétise à façon des nanohybrides d’or et collabore avec de nombreuses équipes pour l’étude de leurs propriétés, notamment plasmoniques, en vue d’applications futures en lien avec l’Énergie, l’Environnement et la Santé, au sein de l'UMR NIMBE.

13 avril 2022

Les molécules possédant une liaison Si-H, ou hydrosilanes*, sont des composés essentiels dans l’industrie du silicium, mais leur production est difficile et énergivore. Leur utilisation croissante comme réducteurs doux offrant des sélectivités remarquables, notamment pour la conversion du CO2 ou de la biomasse, nécessite le développement de nouvelles voies d’accès faciles à mettre en œuvre.

La transformation catalytique de déchets industriels, tels que les composés à liaisons Si-oxygène (siloxanes) ou des chloro-silanes (Si-Cl), en hydrosilanes grâce à l’hydrogène moléculaire est une voie récente offrant des perspectives intéressantes : l'équipe LCMCE du NIMBE (CEA/CNRS) a ainsi développé des catalyseurs moléculaires métalliques et organiques permettant d’effectuer, avec d’excellents rendements, les transformations [Si]-X (I, Br, Cl) en [Si]-H dans des conditions douces de température et de pression (1 à 10 bar de H2). Le laboratoire étudie le mécanisme de ces transformations (observations RMN, synthèses et structures cristallines des espèces mises en jeu, cinétique, études DFT) pour mettre en évidence les espèces responsables de l’activité catalytique et améliorer les processus de transfert d’hydrures.

13 janvier 2022
Depuis fin 2018, l'Alliance NTU Singapour - CEA pour la recherche en économie circulaire (SCARCE), premier laboratoire commun du CEA localisé à l’étranger, focalise ses efforts sur le recyclage des déchets électroniques. De façon très transversale, le DRF/NIMBE avec ses partenaires de la Direction des Energies (CEA-DES) ou de la Direction de la Recherche Technologique (CEA-DRT) et la NTU s’intéressent notamment à la levée de points bloquants. Ces efforts communs ont récemment conduit à plusieurs publications dans le domaine du tri des déchets [1,2], du développement rapide de procédés d’extraction [3] et de la réutilisation des matériaux produits [4].

 

13 décembre 2022

Dans un supraconducteur, le mode de Higgs, analogue du boson de Higgs du modèle standard, est une excitation collective des électrons supraconducteurs appariés en paires de Cooper. Son étude permet une meilleure compréhension de la supraconductivité, mais celui-ci reste cependant difficile à observer, car il ne se couple pas linéairement aux sondes spectroscopiques. Une technique utilisant des impulsions terahertz intense permet néanmoins de montrer que des mesures hors-équilibre permettent un couplage non-linéaire à cette excitation fondamentale des électrons supraconducteurs. Cette technique est ici utilisée dans un supraconducteur à base de fer (Ba1-xKxFe2As2), où la supraconductivité coexiste avec un autre ordre électronique exotique, de type nématique.

 

19 juin 2022

L'oxyde de gallium (Ga2O3) est un oxyde transparent à grand gap (4.8 eV). Dopé avec des atomes de terre rare (néodyme, Europium…) ses propriétés de photoluminescence le rendent attractif pour la réalisation de dispositifs optoélectroniques. En film mince dans sa phase β (structure monoclinique), sa résistance au claquage électrique en fait aussi un composé intéressant pour l'électronique de puissance à très haute tension.

Une collaboration menée par le LSI (CEA-CNRS-École polytechnique) avec l’Unité Mixte de Physique CNRS Thales montre que l’irradiation de l’oxyde de gallium en phase β par des électrons de 2.5 MeV permet de créer sélectivement des lacunes de gallium et d’ajuster ainsi la position du niveau de Fermi dans la bande interdite. L’abaissement du niveau de Fermi révèle la présence des impuretés de métaux de transition (Fe3+, Cr3+). Ces résultats constituent un pas important vers le contrôle des propriétés de ce semi-conducteur émergent.

25 février 2022

Se propageant sur de longues distances à la vitesse de la lumière, les photons peuvent être un bon vecteur de transmission d'une information portée localement par des spins électroniques, à condition de savoir convertir l'état de spin local vers un état de polarisation de la lumière et réciproquement.

Une collaboration internationale incluant le Laboratoire des solides irradiés publie dans Physical Review Letters [1] un article détaillant les mécanismes à l’œuvre pour détecter une lumière polarisée circulairement grâce à des dispositifs de spin-optoélectronique de type photodiodes à spin.

 

 

Retour en haut