| | | | | | | webmail : intra-extra| Accès VPN| Accès IST| Contact | English
Univ. Paris-Saclay

Faits marquants 2019

23 avril 2019

Cette étude propose une méthode innovante de détection de protéines intracellulaires qui associe fluorescence et résonance magnétique, en combinant l’utilisation d’un fluorophore activable de très petite taille et l’exploitation de la grande sensibilité d’un traceur RMN non toxique, le xénon, dont le spin nucléaire est hyperpolarisé. Les biosondes ainsi constituées sont ainsi doublement activables, combinant un signal de fluorescence et un signal de RMN du xénon-129 spécifiques lorsque la cible est rencontrée.

26 février 2019

Les lasers à impulsions ultra-brèves sont au cœur de la recherche sur l'interaction rayonnement-matière avec de nombreuses applications dans des domaines très variés : femto-chimie, photovoltaïque… Certains de ces lasers nécessitent des développements complexes pour que les impulsions produites répondent par leurs caractéristiques (énergie délivrée, longueur d'onde, forme et stabilité de l'impulsion…) à des besoins spécifiques.

Pour le dispositif d'ATTOLAB, Equipex sur la dynamique ultra rapide coordonné par le LIDYL au CEA, plusieurs dispositifs expérimentaux de physique atomique et moléculaire et de physique du solide seront accessibles, pour lesquels il est nécessaire de produire des impulsions laser de forte énergie (qques 10 mJ) à haute cadence (1 ou 10 kHz) présentant un spectre de longueur d’onde et largeur spectrale et accordables, d'une durée inférieure à 20 femtosecondes (1 femtoseconde = 10-15 s), avec un contrôle extrêmement précis des caractéristiques à l’échelle du champ électrique.

Afin d'atteindre les objectifs des expériences, les chercheurs du laboratoire commun "Impulse", associant le LIDYL à la société Amplitude Technologies, ont réalisé une chaine amplificatrice laser avec une configuration des étages amplificateurs originale, qui permet d’obtenir les caractéristiques requises et au meilleur niveau mondial.

21 avril 2019

Les membranes d’oxyde d’aluminium nanoporeuses sont des systèmes modèles permettant d’étudier le comportement de la matière sous confinement. Leurs utilisations pour des études de nano-moulage, de microfluidique ou en biologie sont ainsi nombreuses. Une équipe du laboratoire PHENIX (Université Pierre et Marie Curie) et du laboratoire Léon Brillouin (IRAMIS, CEA Saclay) ont étudié in-situ l’adsorption de polymères chargés dans ces matériaux modèles par une approche combinant la réflectivité de neutrons et la microscopie électronique.

 

Retour en haut