| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST | English
Univ. Paris-Saclay

Faits marquants scientifiques 2020

21 décembre 2020

Les spectres de photoémission reflètent la structure électronique des matériaux. Du fait même de la méthode, le système observé n'est plus dans son état fondamental mais présente des excitations de quasi-particules (paires électron-trou), ainsi que des effets à plusieurs corps qui ne peuvent être compris simplement comme l’excitation de particules renormalisée. Les pics principaux d'un spectre de photoémission correspondent généralement à la structure de bande intrinsèque et présentent une dispersion en énergie en fonction de l'angle d’émission. Des "répliques" de ces pics, appelés satellites, sont aussi observables. Comme elles sont entièrement dues aux interactions électroniques, elles peuvent en principe être utilisées pour mesurer la force de corrélation électronique dans un matériau.

Cependant, le plus souvent les spectres mesurés comprennent d'autres contributions qu'il restait jusqu'à présent très difficile à séparer. Notre étude montre comment l'intensité des pics satellites intrinsèques peut être extraite des spectres résolus angulairement mesurés et couplés avec des informations obtenues par une approche théorique, sur l’origine de satellites non-dispersifs. Par cet ensemble de méthodes, la photoémission résolue en angle (ARPES) peut être utilisée pour fixer a minima et sans ambiguïté une limite inférieure du degré de corrélation électronique.

18 novembre 2020

Des chercheurs du SPEC, en collaboration avec des équipes du C2N et de l'université de Gênes, ont observé la dissolution et la réapparition partielle d'un électron injecté à énergie finie dans les canaux électroniques chiraux unidimensionnels, créés par l'application d'un champ magnétique intense le long des bords d'un système électronique bidimensionnel (en régime d'effet Hall quantique).

Ces résultats contribueront à élucider dans quelle mesure les électrons placés dans ces états de bord, peuvent être utilisés pour mettre en œuvre les analogues électroniques des expériences d'information quantique réalisées avec des photons.

08 novembre 2020

L'électrification automobile et le stockage des énergies renouvelables sont aujourd'hui dominés par la technologie des batteries Li-ion, qui dépend de ressources comme le lithium, le graphite, le cuivre et certains métaux de transition disponibles en quantités limitées et/ou géographiquement inégalement répartis. Des nouvelles technologies de batterie basées sur d’autres ions alcalins ou alcalino-terreux avec des ressources quasi illimitées peuvent au long terme partiellement remplacer les batteries Li-ion pour certaines applications. Les batteries magnésium-ion sont l'une de ces technologies alternatives, en raison de la forte abondance du magnésium et des fortes capacités volumétrique et gravimétrique qui peuvent être atteintes.

Dans la lignée de premiers travaux sur le composé InSb, une équipe de l’IRAMIS a développé un nouveau matériau d’électrode négative pour les batteries Mg-ion basé sur le composé In-Pb. La combinaison synergique des éléments électro-actifs In et Pb influence les mécanismes de réaction et la structure (amorphe/cristallin) des produits formés lors de la réaction avec le Mg. Ceci favorise une capacité élevée, mais est par la suite préjudiciable à la réversibilité du matériau. Ces résultats illustrent l'influence des processus d'amorphisation et de cristallisation des électrodes sur les performances électrochimiques des batteries.

06 novembre 2020

La thermoélasticité décrit la variation des propriétés élastiques d'un corps solide en fonction de sa température. Pour un fluide incompressible, les coefficients thermoélastiques, dilatation isobare et compressibilité isotherme, sont en pratique nuls. Pour être non nuls, il est nécessaire que des interactions à longue portée soient présentes, mais ceci est a priori exclu de par la définition même de l’état liquide.

Une équipe du LLB vient cependant de mettre en évidence des propriétés thermoélastiques pour un liquide dans des conditions usuelles de pression. Ils observent qu'un liquide ordinaire présente une modulation de température sous l'application d'une contrainte mécanique de cisaillement à basse fréquence (~1 Hz) : le liquide se divise en bandes thermiques chaudes et froides, de plusieurs dixièmes de microns de large et variant de manière synchrone avec la déformation. Ce couplage thermomécanique ainsi mis en évidence est une preuve que l'énergie de l’onde de cisaillemente n'est pas totalement dissipée au niveau moléculaire du fait de la viscosité du fluide, mais qu'une partie est convertie adiabatiquement (i.e. sans échange avec l’extérieur) en états thermodynamiques locaux. Ceci est en accord avec de nouveaux modèles théoriques, pour lesquels les liquides ont des propriétés élastiques non-extensives qui s’étendent jusqu’à l’échelle de plusieurs dizaines de microns*.

En outre, la transformation quasi-instantanée de l'énergie de déformation, sous la forme d'une modulation locale de température, implique que les fluctuations (thermiques) de densité sont corrélées à longue distance. Le couplage thermomécanique ainsi mis en évidence a des implications directes pour l’étude des liquides physiologiques. Il pourrait également permettre de réaliser de nouveaux convertisseurs de température, en particulier en microfluidique.

*Tel que "les modèles k-gap", où les modes acoustiques présentent un gap dans l'espace réciproque [7].

 

20 octobre 2020

Les poudres de ciments, ingrédients de base des mortiers et bétons, sont composés d’un grand nombre de minéraux de structures très variées. L'étude cristallographique et l’analyse par diffraction des rayons X de chacun des minéraux et du système complexe multiphasé qu’est un ciment font partie des étapes incontournables pour comprendre les liens entre les conditions d’élaboration et la structure du matériau et ses propriétés.

Des ciments spécifiques sont à l’étude au LSI en vue d’optimiser leurs performances tant pour les matériaux de structure que pour les matrices de stockage des déchets radioactifs ou de traitement d’effluents contaminés. Les recherches menées profitent largement de l'apport de la nouvelle plateforme de diffractomètres implantée à l'Ecole Polytechnique et ouverte à la communauté scientifique du plateau de Saclay.

 

20 octobre 2020
Le CEA, associé à l’ENS Paris-Saclay, et les Universités de Rennes et de San José (USA), a développé de nouvelles molécules émettrices de lumière pour la réalisation de diodes électroluminescentes organiques (OLEDs). Les molécules ont été conçues afin de réduire la consommation électrique et d'améliorer l'intensité lumineuse émise par les diodes. Dans cette toute première étude, une étape de modélisation a permis de mieux comprendre les phénomènes mis en jeux et de calculer ab initio les caractéristiques optiques, afin de sélectionner et orienter la conception de nouvelles molécules avec une structure originale. L'émission lumineuse obtenue étant circulairement polarisée, ce type de composant pourrait avoir un avenir prometteur dans les technologies d’affichage.

 

06 octobre 2020

La compréhension de la façon dont les spins s'orientent et peuvent être manipulés aux échelles très rapide, pico et femtoseconde, a des implications pour les applications de traitement et de stockage des données ultra-rapides et à faible consommation d'énergie.

Une équipe de recherche internationale à laquelle contribue Jean-Eric Wegrowe du Laboratoire des solides irradiés met en évidence expérimentalement la dynamique intrinsèque du spin inertiel dans les couches minces ferromagnétiques, sous la forme d'une nutation de l'aimantation à une fréquence de ~0,5 THz. Ceci montre que le temps de relaxation du moment angulaire dans les ferromagnétiques est de l'ordre de la dizaine de picosecondes.

Ce travail a été publié dans Nature Physics le 28 septembre 2020.

 

28 septembre 2020

Inauguré en mars 2019, le laboratoire commun entre l'Université technologique Nanyang (NTU) de Singapour et le CEA affiche ses premières publications co-signées par des chercheurs de NTU, du CEA-Iramis (NIMBE/LICSEN), de l’ICSM et de la DES à Marcoule.

22 septembre 2020

La contamination bactérienne des surfaces est une problématique majeure dans de nombreux domaines, comme le médical ou l’agroalimentaire. La physiologie particulière des bactéries en surface et le développement de souches multi-résistantes sont deux facteurs qui réduisent l'efficacité des agents antimicrobiens.

Afin d’agir en amont de la formation du biofilm, dès la première étape de bio-adhésion, la stratégie retenue, dans le cadre du projet BRICAPAC (ANR PRCE), est de réaliser des surfaces bioactives par simple contact, permettant d'éliminer les bactéries sans relargage d’agents actifs. La solution trouvée par l'équipe du NIMBE/LICSEN, en collaboration avec une équipe de l'UMR SayFood INRAE-AgroParisTech, est de fonctionnaliser la surface de matériaux d’intérêt pour le domaine agroalimentaire, via le greffage covalent de polymères antibactériens. L'étude fait le lien entre la structure des polymères greffés et les propriétés biologiques obtenues.

31 juillet 2020

La recherche de l'origine de la vie demande d'identifier chaque étape élémentaire d'une longue chaine de processus pouvant, à partir des atomes issus de la nucléosynthèse au cœur des étoiles (essentiellement de l'hydrogène au fer) ou sous l'effet de l'explosion finale des supernovæ (éléments lourds au-delà du fer), conduire à la formation des générations successives de molécules de plus en plus complexes, pour aboutir aux molécules constitutives du vivant telles qu'elles sont présentes sur Terre. Il existe de nombreuses preuves montrant que les premières étapes, jusqu'à la formation d'acides aminés, peuvent se produire dans l'espace.

Au-delà, l'évolution vers des molécules de complexité croissante passe par la création de liaisons peptidiques permettant l'assemblage d'acides aminés. L'équipe du CIMAP, en association avec des équipes de l'Université Autonome de Madrid, montre par des travaux couplant expérience et théorie que les collisions de particules alpha (ou noyau d'hélium) ayant des énergies typiques des vents stellaires peuvent former dans l'espace des liaisons peptidiques au sein d'agrégats d'acides aminés.


The search for the origin of life requires the identification of each elementary step in a long chain of processes that can, from the atoms resulting from nucleosynthesis within stars (mainly from hydrogen to iron) or in the final explosion of supernovae (heavy elements beyond iron), lead to the formation of successive generations of increasingly complex molecules, to arrive at the constituent molecules of life as they are present on Earth. There is ample evidence that the first steps, up to the formation of amino acids, may occur in space.

Beyond that, the evolution towards molecules of increasing complexity involves the creation of peptide bonds allowing the assembly of amino acids. The CIMAP team, in association with teams from the Autonomous University of Madrid, shows, through work combining experience and theory, that collisions of alpha particles (i.e. helium nuclei) with amino acid aggregates at energies typical of stellar winds can form peptide bonds in space.

25 juillet 2020

Les faisceaux d'ions énergétiques font partie des rayonnements ionisants, capable de produire des ions lors de leur interaction avec la matière. L'interaction ion-atome ou molécule cible doit avant tout être bien comprise pour maitriser les processus mis en jeu. Ainsi, de nombreuses études de la fragmentation de molécules isolées induite par l'absorption de rayonnement fournissent une vue détaillée du processus.

Mais qu’en est-il lorsque cette molécule est environnée et constitue un élément d’un solide ou d’un liquide ? Cette question est primordiale pour de nombreuses applications en chimie sous rayonnement ou radiobiologie.

Les expériences menées au CIMAP, en collaboration étroite avec l’Institut of Modern Physics de Lanzhou en Chine, montrent que suite à une irradiation d'une molécule par des ions énergiques, certaines voies réactives ne sont ouvertes, qu'en présence d'un environnement, tel qu'on le trouve au sein d'un dimère.


Energetic ion beams are part of ionizing radiations, able to produce ions when interacting with matter. The interaction between one ion and individual target atom or molecule must first be well understood to master the processes involved. Many studies have given a detailed picture of isolated molecule dissociation induced by ionizing radiation absorption.

However, what may occur if that molecule has an environment, as it is the case in a solid or a liquid? This question is of importance in many situations such as radiation chemistry or radiobiology.

Experiments carried out at CIMAP, in close collaboration with the Institute of Modern Physics in Lanzhou, China, show that following irradiation with energetic ions, reactive pathways can be opened only in the presence of the environment.

Experiments carried out at CIMAP, in close collaboration with the Institute of Modern Physics in Lanzhou, China, show that following the irradiation of molecules by energetic ions, some reactive pathways are only opened in the very presence of an environment, such as that found in a dimer.

18 juillet 2020

Au XIXème siècle, obtenir une photographie nécessitait de longs temps de pose, car les pellicules étaient très peu sensibles. Le problème subsiste en photographie moderne : si l'obturateur est trop rapide, trop peu de photons entrent dans l'appareil pour obtenir une bonne image. Ensuite, la résolution ultime de l'image est limitée par les longueurs d'onde de lumière utilisées (typiquement quelques centaines de nanomètre pour les longueurs d'onde du visible).

De plus, pour les durées extrêmemement courtes, une impulsion lumineuse de durée attosecondes (quelques 10-18 s) est nécessairement composée d'un spectre très large en longueurs d'onde, dont la superposition brouille toute figure d'interférences. Ceci rend inefficace les méthodes usuelles de récupération d'image à partir d’algorithmes de résolution de problèmes inverses, bien connus au LIDYL. Tenant compte de ces limites, comment obtenir alors l'image d'un objet nanométrique avec une résolution attoseconde ?
Les chercheurs du LIDYL et du Synchrotron Soleil présentent une méthode originale pour dés-intriquer les contributions spectrales d'une impulsion attoseconde. Des images de très bonne qualité ont pu être reconstituées à partir de cette méthode, ce qui ouvre la voie à une imagerie à résolution nanométrique et attoseconde, accessible à partir des faisceaux de lumière générés par des sources de type Attosecond XFELs ou par génération d’harmoniques laser d’ordre élevé (ATTOLAB).

12 juillet 2020

Les nanomédicaments sont considérés comme des thérapies prometteuses pour le traitement du cancer. Cependant, leur utilisation clinique reste encore limitée, dû en partie au fait que leur comportement biologique n'est pas encore vraiment élucidé. Extraire des théories générales à partir de la grande variété de nanoparticules et des conditions de leur utilisation reste en effet difficile, et les techniques pertinentes font défaut pour obtenir des informations in situ.

Dans ce travail, ces deux aspects du problème sont abordés en combinant des nanoparticules modèles de nature variable avec des outils in situ basés sur des techniques de diffusion de aux petits angles (SAS, rayons X ou neutrons). La stratégie repose sur le développement d’une bibliothèque de nanoparticules greffées de polymères avec des cœurs d’or identiques, afin de réaliser une étude systématique de leurs interactions avec les systèmes biologiques. Il est ainsi montré qu'une modulation de la chimie des polymères modifie les propriétés de surface, tout en conservant la même structure des nanoparticules, ce qui permet une comparaison fiable entre les objets.

Quatre aspects spécifiques ont été plus particulièrement examinés: la stabilité colloïdale, la captation cellulaire, la toxicité et la diffusion dans la matrice extracellulaire. De manière intéressante, il a été montré que la copolymérisation entre les monomères hydrophobes et chargés positivement contribue à réduire significativement la toxicité des nano-objets tout en conservant une bonne internalisation cellulaire. Les techniques SAS ont ainsi fourni des informations précieuses in situ sur l'évolution et la migration des nanoparticules dans des environnements biologiquement pertinents (milieux de culture cellulaire et matrice extracellulaire). [1, 2, 3]

24 juin 2020

À la fois organiques et métalliques, les nanoparticules hybrides offrent une large palette de propriétés pour des applications allant de la biodétection à la photonique. Elles restent cependant difficiles à synthétiser et à fonctionnaliser avec précision.

Une large collaboration rassemblant des chercheurs des deux UMRs  CEA-CNRS SPEC et NIMBE, de l’IS2M (CNRS/Université Haute Alsace), du L2n (CNRS/UTT) et de l’ICR (CNRS/Aix Marseille Université), a développé une méthode efficace et précise pour leur donner de nouvelles propriétés, comme les rendre hydrophobes. Pour cela, les chimistes passent par deux étapes successives de polymérisation par la lumière, révélant des fonctions dormantes, permettant d’induire de nouvelles réactions en surface.

12 juin 2020

Dans la production industrielle de méthanol (CH3OH), l'atome de carbone est usuellement issu du méthane (CH4), provenant pour l'essentiel de gisements de pétrole, gaz naturel et de schistes. Une nouvelle stratégie pour préparer le méthanol à partir de l'acide formique (HCOOH), lui-même issu du CO2, est présentée par une équipe du NIMBE/LCMCE. Le procédé utilise la dismutation* de formiates silylés (HCOO--Si-R3) en méthoxysilanes (CH3-O-Si-R3), réaction catalysée par des complexes de ruthénium. Le méthanol est ensuite obtenu par simple hydrolyse. Des solutions aqueuses de méthanol (> 1 ml) ont été ainsi obtenues avec un rendement élevé (> 70 %). De plus, il est montré que les sous-produits siliciés de la réaction peuvent être recyclés avec un réactif bon marché et facilement disponible. Le procédé se révèle ainsi durable et respectueux de l'environnement.

01 juin 2020
La détection de photons uniques est un élément clé dans le développement des technologies quantiques, où le signal résultant d'un calcul quantique peut se limiter à l'émission d'un seul photon. Mais au sein des circuits quantiques supraconducteurs à très basse température, ce sont des photons micro-onde, d'énergie cent mille fois plus faible, qui interviennent dans les processus. Avec les chercheurs de l'IRAMIS, une collaboration de chercheurs de laboratoires franciliens a développé une nouvelle méthode de mesure qui présente un rapport signal sur bruit inégalé.

 

23 mai 2020

Au sein d'un échantillon solide, réduire la température des spins est une bonne méthode pour améliorer le signal de RMN ou de RPE, puisque cela favorise leur polarisation selon la direction imposée par le champ externe appliqué. L'équipe du SPEC propose une méthode très générale et vient de montrer expérimentalement qu'il est possible de refroidir une assemblée de spins à une température inférieure à celle du cristal qui les porte, du fait de leur couplage avec le champ électromagnétique au sein d'une cavité microonde résonante accordée.
La méthode brevetée peut s'appliquer à tout système de spins électroniques pouvant être amenés en régime d'effet Purcell, où la relaxation des spins électroniques est dominée par la voie radiative.

 

28 avril 2020

Le phosphore noir (Black phosphorus : BP) est constitué d'un empilement de couches monoatomiques de phosphore, liées entre elles uniquement par des forces de Van der Waals. Ce matériau 2d suscite actuellement un grand intérêt en raison de sa bande interdite largement accordable en fonction de l'épaisseur du matériau, de la très grande mobilité de ses porteurs, pour son application dans les transistors à effet de champ (FET), et l'émergence possible d'états topologiquement protégés. Il a été démontré qu'une action électrostatique ou l'évaporation de métaux alcalins, donneurs d'électrons, peuvent être utilisés avec succès pour doper le BP et passer d'une phase semi-conductrice à une phase semi-métallique avec des canaux de transport en cône de Dirac (relation de dispersion linéaire).

Les expérimentateurs et théoriciens du Laboratoire de Solides Irradiés (LSI) ont ainsi étudié les états électroniques excités du phosphore noir après le dépôt par évaporation d'une dose croissante d'atomes alcalins. Le dispositif expérimental FemtoARPES* (photoémission résolue en angle) du LSI a été utilisé pour suivre la fermeture de la bande interdite avec une précision inégalée. Cette ingénierie de la structure de bande permet de concevoir des dispositifs dotés de fonctionnalités électroniques et optoélectroniques améliorées et optimisées.

 

15 avril 2020

La recherche de nouveaux états de la matière, allant au-delà de la description classique "à la Landau" suscite un très fort engouement en physique. Dans cette perspective, les travaux théoriques orientent ces recherches vers les systèmes présentant des "ordres topologiques", tels que certains "liquides de spin quantiques" et autres états fortement corrélés, caractérisés en particulier par l’absence de symétrie brisée.

Sur le plan expérimental, c’est la recherche d’une contrepartie quantique des "glaces de spins" qui a retenu l’attention. Ces composés forment un analogue magnétique de la glace d’eau, où le comportement des spins reflète exactement celui du désordre des protons dans H2O.

Une équipe internationale formée de chercheurs du PSI (Suisse), du Stanford Institute for Materials and Energy Science (USA), de l’Institut Néel à Grenoble et du LLB à Saclay a mis en évidence par diverses techniques, dont la diffusion des neutrons, un exemple de cette contrepartie quantique des glaces de spin. Plus précisément, il s’agit d’un état "glacé" particulier, où la distribution octupolaire de la densité électronique joue le rôle des moments magnétiques dans les glaces de spins classiques. L’étude des interactions montre que l’état fondamental est constitué d’une superposition quantique d’états intriqués, confirmant ainsi les prédictions théoriques sur les liquides de spins quantiques.

14 avril 2020

Les études sur l'influence de rayonnements de toutes natures sur la matière biologique ont des enjeux à la fois pour la protection de la santé et pour les moyens thérapeutiques qu'elles peuvent offrir. Radiobiologie (effets de particules ionisantes) et photobiologie (effets de la lumière) contribuent chacun dans leur domaine.

Par une expérience originale combinant faisceaux d'électrons et de lumière une collaboration de l'Université Paris-Saclay, impliquant le LIDYL et le NIMBE, associée à la start up ITeox, montre que les effets des deux types de faisceau présente des similarités, en particulier dans la formation d’états excités de l'ADN, et des différences dans la nature des états excités formés qu'il faudra  explorer.

17 mars 2020

Les faisceaux d'ions focalisés (FIB, 1 à 50 keV) sont largement utilisés pour façonner les semi-conducteurs pour la réalisation de dispositifs électroniques. Les faisceaux d'ions énergétiques apportent d'autres possibilités : l'irradiation par des ions de faible énergie pulvérise en surface, ils peuvent également être utilisé pour de l’implantation (dopage ou procédé de smart-cut). Les ions d'énergie intermédiaire (~ 50-500 keV) induisent des déplacements d'atomes en volume (pouvoir d'arrêt nucléaire) et à haute énergie (~ 30 MeV) on observe la formation par perte d'énergie électronique, de traces latentes, de désordre et d'éventuelles transitions de phase,

Dans la présente étude, les chercheurs du CIMAP, en collaboration avec DEN/DMN/SRMP et l'IJCLab d’Orsay ont étudié, sur l'installation JANNuS, les effets couplés sur le silicium d'une double irradiation à basse et haute énergie. Il est ainsi montré que le degré et la profondeur d'amorphisation dépendent fortement du rapport d'intensité des 2 types de faisceau d'ions : l'énergie déposée sous forme d'excitation électronique permet de réduire fortement les dommages dus aux collisions balistiques, à condition que le flux du faisceau d'ions à haute vitesse soit suffisamment élevé par rapport à celui des ions de basse vitesse. Le procédé permet ainsi de moduler la cristallinité du silicium sur des épaisseurs contrôlées.

13 mars 2020

Les matériaux composites, dont on peut faire judicieusement varier la composition, permettent de combiner les propriétés de ses constituants. Ainsi, l’ajout de matériaux inorganiques (ou charge) dans une matrice polymère permet d’améliorer les propriétés d’usage de ces matériaux, telles que leurs propriétés mécaniques, électriques ou optiques, et aussi d'alléger le matériau ou d'en diminuer le coût.

Dans l’industrie du pneumatique, et en particulier dans la formulation des bandes de roulement, on utilise ainsi des matrices élastomères que l'on renforce par des particules de silice. L'étude réalisée au LLB, en collaboration avec Michelin, montrent qu'il est possible de jouer sur les effets d'entropie de mélange et la balance des contributions entropique/enthalpique des interactions, pour piloter la dispersion des particules dans la matrice et contrôler les propriétés macroscopiques des matériaux.

 

19 février 2020

Dans les cellules photovoltaïques, l'absorption d'un photon par un matériau semi-conducteur crée une paire électron-trou (appelée exciton), résultant de l’excitation d’un électron de la bande de valence vers la bande de conduction. Si l'énergie du photon absorbé est supérieure à celle de la bande interdite du semi-conducteur, la paire électron-trou formée possède un excès d’énergie qui sera rapidement dissipé, typiquement sous forme de chaleur (relaxation aux bords de bande). Extraire les porteurs de charge "chauds" (c.à.d. avant leur relaxation) pourrait permettre de doubler l’efficacité des dispositifs photovoltaïques.

Dans les dispositifs lumineux tels que les LEDs ou lasers, une relaxation rapide des porteurs chauds est plutôt recherchée. Il est ainsi important de comprendre les mécanismes de relaxation électronique.

Pour toutes ces applications, les matériaux pérovskites halogénées présentent des propriétés optiques et électroniques particulièrement intéressantes. Ces propriétés ont récemment été aussi étudiées dans le cas de nanostructures, où les effets de confinement modifient de manière radicale la structure électronique du matériau, ce qui doit influer sur les taux de relaxation. Dans l’équipe DICO du LIDYL, le rôle du confinement quantique sur la relaxation a été exploré par une expérience de spectroscopie optique  femtoseconde (1 fs = 10-15 s) : dans des nano-plaquettes de pérovskite de quelques monocouches d’épaisseur, il est montré que le temps de relaxation reste très court (quelques centaines de fs).  Alors que l'écartement des niveaux électroniques induit par la nanostructuration devrait atténuer la principale source de dissipation via le couplage avec les phonons, ces résultats mettent en évidence qu'un autre chemin de relaxation particulièrement efficace en confinement fort existe et qui semble liée aux ligands en surface de ces nanostructures colloïdales.

11 février 2020

Les progrès continus dans l'exploration du magnétisme permettent de proposer de nouveaux dispositifs pour le traitement, le transfert ou le stockage de l'information.

Les matériaux antiferromagnétiques et multiferroïques présentent une structure en domaines ferroélectriques. La présente étude montre que la perte locale de symétrie au niveau des parois séparant ces domaines permet l'émergence d'embryons de skyrmions antiferromagnétiques, vortex local de spin chiral (avec un enroulement droite ou gauche des spins) de très petite taille.

L’étude montre ainsi toute la richesse des parois multiferroïques, pour un nouveau pas vers une spintronique topologique et antiferromagnétique, pouvant permettre de réaliser des dispositifs de traitement de l'information originaux et performants : la mémorisation de la valeur d'un bit sur un skyrmion permettrait le stockage magnétique de l'information avec une très haute densité.

 

08 janvier 2020

Pour étendre notre production intermittente d'électricité décarbonée, il faut disposer de méthodes efficaces de stockage d'électricité. Les supercondensateurs sont des dispositifs de stockage d’énergie électrique rechargeables, constitués de deux électrodes séparées par un électrolyte. Ces systèmes se situent entre les condensateurs (charge et décharge ultrarapide, mais énergie limitée) et les batteries (forte énergie stockée, mais charge/décharge lente). Ce sont de bons candidats pour compléter ou remplacer les dispositifs existants grâce à leur efficacité de stockage, leur sécurité, leur fiabilité et leur durée de vie. Ainsi, le marché des supercondensateurs se développe, mais le plafonnement des performances des technologies basées sur les électrodes en carbone activé limite leur diffusion.

De nouveaux matériaux d'électrode à base de nanotubes de carbone verticalement alignés (VACNT) imprégnés de polymères conjugués (conducteurs) ont démontré leur intérêt pour réaliser des supercondensateurs avec un gain en énergie et surtout de puissance [1 et 10]*. Pour une production industrielle ern continu et commercialement compétitive, il  est cependant impératif d'abaisser fortement la température d'élaboration pour permettre la croissance des VACNT sur feuille d'aluminium de qualité industrielle, utilisée en tant que collecteur de courant.

Cette étape vient d’être franchie avec succès. Un procédé simple et rentable a pu être optimisé pour la production de tapis de VACNT propres et denses, à des températures de l'ordre de 600°C sur feuille d’aluminium. Les vitesses de croissance (µm/s) sont au meilleur de l’état de l’art, et des épaisseurs jusqu'à 200 µm ont pu être obtenues, ce qui ouvre la voie à la production industrielle de supercondensateurs innovants [2].

* Ce résultat obtenu dans le cadre d’une collaboration entre l’équipe LEDNA du NIMBE, le LPPI (CY Cergy Paris Université) et le PCM2E (Université de Tours), couplé à la démonstration de la fabrication de VACNT sur des surfaces A4 prototypes, est à l’origine de la création en 2013 de la start-up Nawatechnologies et du Nawalab, laboratoire de recherche commun entre ces 4 entités. Ainsi, Nawatechnologies a pu concevoir et installer une machine pilote permettant l’exploitation à grande échelle du procédé de dépôt chimique en phase vapeur de VACNT, procédé en une seule étape mis au point au NIMBE et compatible avec une production en continu à pression atmosphérique.

07 janvier 2020

Formuler un substitut sanguin capable de transporter efficacement l’oxygène, sans toxicité biologique ou chimique, et dont la préparation serait peu coûteuse pour de très grandes quantités, est un graal qui remonte au XVIIème siècle [1]. De nombreuses solutions ont été avancées, notamment à base d’hémoglobines, protéines d’origine humaine, animale ou bactérienne qui transportent l’oxygène dans le sang. Aucune piste n’a permis jusqu’à présent de proposer un produit acceptable par les autorités de santé.

Une équipe d'IRAMIS, en collaboration avec deux équipes de l'institut Frédéric Joliot, et avec une jeune start-up : LBP propose une nouvelle voie : Il est montré que la molécule CB5(OH)10 est capable de complexer efficacement dans sa cavité le dioxygène d'une solution physiologique [2]. CB5(OH)10 appartient à la famille des cucurbiturils, en référence à leur forme qui ressemble à celle d'une citrouille. La propriété d'encapsulation du dioxygène par CB5(OH)10 est comparable, en son principe, à celle de l'hémoglobine, principal vecteur de transport du dioxygène dans le sang. La start-up ambitionne de proposer un substitut sanguin entièrement thermostable et synthétique, donc sans aucun risque infectieux.

31 juillet 2020

La recherche de l'origine de la vie demande d'identifier chaque étape élémentaire d'une longue chaine de processus pouvant, à partir des atomes issus de la nucléosynthèse au cœur des étoiles (essentiellement de l'hydrogène au fer) ou sous l'effet de l'explosion finale des supernovæ (éléments lourds au-delà du fer), conduire à la formation des générations successives de molécules de plus en plus complexes, pour aboutir aux molécules constitutives du vivant telles qu'elles sont présentes sur Terre. Il existe de nombreuses preuves montrant que les premières étapes, jusqu'à la formation d'acides aminés, peuvent se produire dans l'espace.

Au-delà, l'évolution vers des molécules de complexité croissante passe par la création de liaisons peptidiques permettant l'assemblage d'acides aminés. L'équipe du CIMAP, en association avec des équipes de l'Université Autonome de Madrid, montre par des travaux couplant expérience et théorie que les collisions de particules alpha (ou noyau d'hélium) ayant des énergies typiques des vents stellaires peuvent former dans l'espace des liaisons peptidiques au sein d'agrégats d'acides aminés.


The search for the origin of life requires the identification of each elementary step in a long chain of processes that can, from the atoms resulting from nucleosynthesis within stars (mainly from hydrogen to iron) or in the final explosion of supernovae (heavy elements beyond iron), lead to the formation of successive generations of increasingly complex molecules, to arrive at the constituent molecules of life as they are present on Earth. There is ample evidence that the first steps, up to the formation of amino acids, may occur in space.

Beyond that, the evolution towards molecules of increasing complexity involves the creation of peptide bonds allowing the assembly of amino acids. The CIMAP team, in association with teams from the Autonomous University of Madrid, shows, through work combining experience and theory, that collisions of alpha particles (i.e. helium nuclei) with amino acid aggregates at energies typical of stellar winds can form peptide bonds in space.

25 juillet 2020

Les faisceaux d'ions énergétiques font partie des rayonnements ionisants, capable de produire des ions lors de leur interaction avec la matière. L'interaction ion-atome ou molécule cible doit avant tout être bien comprise pour maitriser les processus mis en jeu. Ainsi, de nombreuses études de la fragmentation de molécules isolées induite par l'absorption de rayonnement fournissent une vue détaillée du processus.

Mais qu’en est-il lorsque cette molécule est environnée et constitue un élément d’un solide ou d’un liquide ? Cette question est primordiale pour de nombreuses applications en chimie sous rayonnement ou radiobiologie.

Les expériences menées au CIMAP, en collaboration étroite avec l’Institut of Modern Physics de Lanzhou en Chine, montrent que suite à une irradiation d'une molécule par des ions énergiques, certaines voies réactives ne sont ouvertes, qu'en présence d'un environnement, tel qu'on le trouve au sein d'un dimère.


Energetic ion beams are part of ionizing radiations, able to produce ions when interacting with matter. The interaction between one ion and individual target atom or molecule must first be well understood to master the processes involved. Many studies have given a detailed picture of isolated molecule dissociation induced by ionizing radiation absorption.

However, what may occur if that molecule has an environment, as it is the case in a solid or a liquid? This question is of importance in many situations such as radiation chemistry or radiobiology.

Experiments carried out at CIMAP, in close collaboration with the Institute of Modern Physics in Lanzhou, China, show that following irradiation with energetic ions, reactive pathways can be opened only in the presence of the environment.

Experiments carried out at CIMAP, in close collaboration with the Institute of Modern Physics in Lanzhou, China, show that following the irradiation of molecules by energetic ions, some reactive pathways are only opened in the very presence of an environment, such as that found in a dimer.

17 mars 2020

Les faisceaux d'ions focalisés (FIB, 1 à 50 keV) sont largement utilisés pour façonner les semi-conducteurs pour la réalisation de dispositifs électroniques. Les faisceaux d'ions énergétiques apportent d'autres possibilités : l'irradiation par des ions de faible énergie pulvérise en surface, ils peuvent également être utilisé pour de l’implantation (dopage ou procédé de smart-cut). Les ions d'énergie intermédiaire (~ 50-500 keV) induisent des déplacements d'atomes en volume (pouvoir d'arrêt nucléaire) et à haute énergie (~ 30 MeV) on observe la formation par perte d'énergie électronique, de traces latentes, de désordre et d'éventuelles transitions de phase,

Dans la présente étude, les chercheurs du CIMAP, en collaboration avec DEN/DMN/SRMP et l'IJCLab d’Orsay ont étudié, sur l'installation JANNuS, les effets couplés sur le silicium d'une double irradiation à basse et haute énergie. Il est ainsi montré que le degré et la profondeur d'amorphisation dépendent fortement du rapport d'intensité des 2 types de faisceau d'ions : l'énergie déposée sous forme d'excitation électronique permet de réduire fortement les dommages dus aux collisions balistiques, à condition que le flux du faisceau d'ions à haute vitesse soit suffisamment élevé par rapport à celui des ions de basse vitesse. Le procédé permet ainsi de moduler la cristallinité du silicium sur des épaisseurs contrôlées.

18 juillet 2020

Au XIXème siècle, obtenir une photographie nécessitait de longs temps de pose, car les pellicules étaient très peu sensibles. Le problème subsiste en photographie moderne : si l'obturateur est trop rapide, trop peu de photons entrent dans l'appareil pour obtenir une bonne image. Ensuite, la résolution ultime de l'image est limitée par les longueurs d'onde de lumière utilisées (typiquement quelques centaines de nanomètre pour les longueurs d'onde du visible).

De plus, pour les durées extrêmemement courtes, une impulsion lumineuse de durée attosecondes (quelques 10-18 s) est nécessairement composée d'un spectre très large en longueurs d'onde, dont la superposition brouille toute figure d'interférences. Ceci rend inefficace les méthodes usuelles de récupération d'image à partir d’algorithmes de résolution de problèmes inverses, bien connus au LIDYL. Tenant compte de ces limites, comment obtenir alors l'image d'un objet nanométrique avec une résolution attoseconde ?
Les chercheurs du LIDYL et du Synchrotron Soleil présentent une méthode originale pour dés-intriquer les contributions spectrales d'une impulsion attoseconde. Des images de très bonne qualité ont pu être reconstituées à partir de cette méthode, ce qui ouvre la voie à une imagerie à résolution nanométrique et attoseconde, accessible à partir des faisceaux de lumière générés par des sources de type Attosecond XFELs ou par génération d’harmoniques laser d’ordre élevé (ATTOLAB).

14 avril 2020

Les études sur l'influence de rayonnements de toutes natures sur la matière biologique ont des enjeux à la fois pour la protection de la santé et pour les moyens thérapeutiques qu'elles peuvent offrir. Radiobiologie (effets de particules ionisantes) et photobiologie (effets de la lumière) contribuent chacun dans leur domaine.

Par une expérience originale combinant faisceaux d'électrons et de lumière une collaboration de l'Université Paris-Saclay, impliquant le LIDYL et le NIMBE, associée à la start up ITeox, montre que les effets des deux types de faisceau présente des similarités, en particulier dans la formation d’états excités de l'ADN, et des différences dans la nature des états excités formés qu'il faudra  explorer.

19 février 2020

Dans les cellules photovoltaïques, l'absorption d'un photon par un matériau semi-conducteur crée une paire électron-trou (appelée exciton), résultant de l’excitation d’un électron de la bande de valence vers la bande de conduction. Si l'énergie du photon absorbé est supérieure à celle de la bande interdite du semi-conducteur, la paire électron-trou formée possède un excès d’énergie qui sera rapidement dissipé, typiquement sous forme de chaleur (relaxation aux bords de bande). Extraire les porteurs de charge "chauds" (c.à.d. avant leur relaxation) pourrait permettre de doubler l’efficacité des dispositifs photovoltaïques.

Dans les dispositifs lumineux tels que les LEDs ou lasers, une relaxation rapide des porteurs chauds est plutôt recherchée. Il est ainsi important de comprendre les mécanismes de relaxation électronique.

Pour toutes ces applications, les matériaux pérovskites halogénées présentent des propriétés optiques et électroniques particulièrement intéressantes. Ces propriétés ont récemment été aussi étudiées dans le cas de nanostructures, où les effets de confinement modifient de manière radicale la structure électronique du matériau, ce qui doit influer sur les taux de relaxation. Dans l’équipe DICO du LIDYL, le rôle du confinement quantique sur la relaxation a été exploré par une expérience de spectroscopie optique  femtoseconde (1 fs = 10-15 s) : dans des nano-plaquettes de pérovskite de quelques monocouches d’épaisseur, il est montré que le temps de relaxation reste très court (quelques centaines de fs).  Alors que l'écartement des niveaux électroniques induit par la nanostructuration devrait atténuer la principale source de dissipation via le couplage avec les phonons, ces résultats mettent en évidence qu'un autre chemin de relaxation particulièrement efficace en confinement fort existe et qui semble liée aux ligands en surface de ces nanostructures colloïdales.

06 novembre 2020

La thermoélasticité décrit la variation des propriétés élastiques d'un corps solide en fonction de sa température. Pour un fluide incompressible, les coefficients thermoélastiques, dilatation isobare et compressibilité isotherme, sont en pratique nuls. Pour être non nuls, il est nécessaire que des interactions à longue portée soient présentes, mais ceci est a priori exclu de par la définition même de l’état liquide.

Une équipe du LLB vient cependant de mettre en évidence des propriétés thermoélastiques pour un liquide dans des conditions usuelles de pression. Ils observent qu'un liquide ordinaire présente une modulation de température sous l'application d'une contrainte mécanique de cisaillement à basse fréquence (~1 Hz) : le liquide se divise en bandes thermiques chaudes et froides, de plusieurs dixièmes de microns de large et variant de manière synchrone avec la déformation. Ce couplage thermomécanique ainsi mis en évidence est une preuve que l'énergie de l’onde de cisaillemente n'est pas totalement dissipée au niveau moléculaire du fait de la viscosité du fluide, mais qu'une partie est convertie adiabatiquement (i.e. sans échange avec l’extérieur) en états thermodynamiques locaux. Ceci est en accord avec de nouveaux modèles théoriques, pour lesquels les liquides ont des propriétés élastiques non-extensives qui s’étendent jusqu’à l’échelle de plusieurs dizaines de microns*.

En outre, la transformation quasi-instantanée de l'énergie de déformation, sous la forme d'une modulation locale de température, implique que les fluctuations (thermiques) de densité sont corrélées à longue distance. Le couplage thermomécanique ainsi mis en évidence a des implications directes pour l’étude des liquides physiologiques. Il pourrait également permettre de réaliser de nouveaux convertisseurs de température, en particulier en microfluidique.

*Tel que "les modèles k-gap", où les modes acoustiques présentent un gap dans l'espace réciproque [7].

 

15 avril 2020

La recherche de nouveaux états de la matière, allant au-delà de la description classique "à la Landau" suscite un très fort engouement en physique. Dans cette perspective, les travaux théoriques orientent ces recherches vers les systèmes présentant des "ordres topologiques", tels que certains "liquides de spin quantiques" et autres états fortement corrélés, caractérisés en particulier par l’absence de symétrie brisée.

Sur le plan expérimental, c’est la recherche d’une contrepartie quantique des "glaces de spins" qui a retenu l’attention. Ces composés forment un analogue magnétique de la glace d’eau, où le comportement des spins reflète exactement celui du désordre des protons dans H2O.

Une équipe internationale formée de chercheurs du PSI (Suisse), du Stanford Institute for Materials and Energy Science (USA), de l’Institut Néel à Grenoble et du LLB à Saclay a mis en évidence par diverses techniques, dont la diffusion des neutrons, un exemple de cette contrepartie quantique des glaces de spin. Plus précisément, il s’agit d’un état "glacé" particulier, où la distribution octupolaire de la densité électronique joue le rôle des moments magnétiques dans les glaces de spins classiques. L’étude des interactions montre que l’état fondamental est constitué d’une superposition quantique d’états intriqués, confirmant ainsi les prédictions théoriques sur les liquides de spins quantiques.

13 mars 2020

Les matériaux composites, dont on peut faire judicieusement varier la composition, permettent de combiner les propriétés de ses constituants. Ainsi, l’ajout de matériaux inorganiques (ou charge) dans une matrice polymère permet d’améliorer les propriétés d’usage de ces matériaux, telles que leurs propriétés mécaniques, électriques ou optiques, et aussi d'alléger le matériau ou d'en diminuer le coût.

Dans l’industrie du pneumatique, et en particulier dans la formulation des bandes de roulement, on utilise ainsi des matrices élastomères que l'on renforce par des particules de silice. L'étude réalisée au LLB, en collaboration avec Michelin, montrent qu'il est possible de jouer sur les effets d'entropie de mélange et la balance des contributions entropique/enthalpique des interactions, pour piloter la dispersion des particules dans la matrice et contrôler les propriétés macroscopiques des matériaux.

 

18 novembre 2020

Des chercheurs du SPEC, en collaboration avec des équipes du C2N et de l'université de Gênes, ont observé la dissolution et la réapparition partielle d'un électron injecté à énergie finie dans les canaux électroniques chiraux unidimensionnels, créés par l'application d'un champ magnétique intense le long des bords d'un système électronique bidimensionnel (en régime d'effet Hall quantique).

Ces résultats contribueront à élucider dans quelle mesure les électrons placés dans ces états de bord, peuvent être utilisés pour mettre en œuvre les analogues électroniques des expériences d'information quantique réalisées avec des photons.

24 juin 2020

À la fois organiques et métalliques, les nanoparticules hybrides offrent une large palette de propriétés pour des applications allant de la biodétection à la photonique. Elles restent cependant difficiles à synthétiser et à fonctionnaliser avec précision.

Une large collaboration rassemblant des chercheurs des deux UMRs  CEA-CNRS SPEC et NIMBE, de l’IS2M (CNRS/Université Haute Alsace), du L2n (CNRS/UTT) et de l’ICR (CNRS/Aix Marseille Université), a développé une méthode efficace et précise pour leur donner de nouvelles propriétés, comme les rendre hydrophobes. Pour cela, les chimistes passent par deux étapes successives de polymérisation par la lumière, révélant des fonctions dormantes, permettant d’induire de nouvelles réactions en surface.

01 juin 2020
La détection de photons uniques est un élément clé dans le développement des technologies quantiques, où le signal résultant d'un calcul quantique peut se limiter à l'émission d'un seul photon. Mais au sein des circuits quantiques supraconducteurs à très basse température, ce sont des photons micro-onde, d'énergie cent mille fois plus faible, qui interviennent dans les processus. Avec les chercheurs de l'IRAMIS, une collaboration de chercheurs de laboratoires franciliens a développé une nouvelle méthode de mesure qui présente un rapport signal sur bruit inégalé.

 

23 mai 2020

Au sein d'un échantillon solide, réduire la température des spins est une bonne méthode pour améliorer le signal de RMN ou de RPE, puisque cela favorise leur polarisation selon la direction imposée par le champ externe appliqué. L'équipe du SPEC propose une méthode très générale et vient de montrer expérimentalement qu'il est possible de refroidir une assemblée de spins à une température inférieure à celle du cristal qui les porte, du fait de leur couplage avec le champ électromagnétique au sein d'une cavité microonde résonante accordée.
La méthode brevetée peut s'appliquer à tout système de spins électroniques pouvant être amenés en régime d'effet Purcell, où la relaxation des spins électroniques est dominée par la voie radiative.

 

11 février 2020

Les progrès continus dans l'exploration du magnétisme permettent de proposer de nouveaux dispositifs pour le traitement, le transfert ou le stockage de l'information.

Les matériaux antiferromagnétiques et multiferroïques présentent une structure en domaines ferroélectriques. La présente étude montre que la perte locale de symétrie au niveau des parois séparant ces domaines permet l'émergence d'embryons de skyrmions antiferromagnétiques, vortex local de spin chiral (avec un enroulement droite ou gauche des spins) de très petite taille.

L’étude montre ainsi toute la richesse des parois multiferroïques, pour un nouveau pas vers une spintronique topologique et antiferromagnétique, pouvant permettre de réaliser des dispositifs de traitement de l'information originaux et performants : la mémorisation de la valeur d'un bit sur un skyrmion permettrait le stockage magnétique de l'information avec une très haute densité.

 

08 novembre 2020

L'électrification automobile et le stockage des énergies renouvelables sont aujourd'hui dominés par la technologie des batteries Li-ion, qui dépend de ressources comme le lithium, le graphite, le cuivre et certains métaux de transition disponibles en quantités limitées et/ou géographiquement inégalement répartis. Des nouvelles technologies de batterie basées sur d’autres ions alcalins ou alcalino-terreux avec des ressources quasi illimitées peuvent au long terme partiellement remplacer les batteries Li-ion pour certaines applications. Les batteries magnésium-ion sont l'une de ces technologies alternatives, en raison de la forte abondance du magnésium et des fortes capacités volumétrique et gravimétrique qui peuvent être atteintes.

Dans la lignée de premiers travaux sur le composé InSb, une équipe de l’IRAMIS a développé un nouveau matériau d’électrode négative pour les batteries Mg-ion basé sur le composé In-Pb. La combinaison synergique des éléments électro-actifs In et Pb influence les mécanismes de réaction et la structure (amorphe/cristallin) des produits formés lors de la réaction avec le Mg. Ceci favorise une capacité élevée, mais est par la suite préjudiciable à la réversibilité du matériau. Ces résultats illustrent l'influence des processus d'amorphisation et de cristallisation des électrodes sur les performances électrochimiques des batteries.

20 octobre 2020
Le CEA, associé à l’ENS Paris-Saclay, et les Universités de Rennes et de San José (USA), a développé de nouvelles molécules émettrices de lumière pour la réalisation de diodes électroluminescentes organiques (OLEDs). Les molécules ont été conçues afin de réduire la consommation électrique et d'améliorer l'intensité lumineuse émise par les diodes. Dans cette toute première étude, une étape de modélisation a permis de mieux comprendre les phénomènes mis en jeux et de calculer ab initio les caractéristiques optiques, afin de sélectionner et orienter la conception de nouvelles molécules avec une structure originale. L'émission lumineuse obtenue étant circulairement polarisée, ce type de composant pourrait avoir un avenir prometteur dans les technologies d’affichage.

 

28 septembre 2020

Inauguré en mars 2019, le laboratoire commun entre l'Université technologique Nanyang (NTU) de Singapour et le CEA affiche ses premières publications co-signées par des chercheurs de NTU, du CEA-Iramis (NIMBE/LICSEN), de l’ICSM et de la DES à Marcoule.

22 septembre 2020

La contamination bactérienne des surfaces est une problématique majeure dans de nombreux domaines, comme le médical ou l’agroalimentaire. La physiologie particulière des bactéries en surface et le développement de souches multi-résistantes sont deux facteurs qui réduisent l'efficacité des agents antimicrobiens.

Afin d’agir en amont de la formation du biofilm, dès la première étape de bio-adhésion, la stratégie retenue, dans le cadre du projet BRICAPAC (ANR PRCE), est de réaliser des surfaces bioactives par simple contact, permettant d'éliminer les bactéries sans relargage d’agents actifs. La solution trouvée par l'équipe du NIMBE/LICSEN, en collaboration avec une équipe de l'UMR SayFood INRAE-AgroParisTech, est de fonctionnaliser la surface de matériaux d’intérêt pour le domaine agroalimentaire, via le greffage covalent de polymères antibactériens. L'étude fait le lien entre la structure des polymères greffés et les propriétés biologiques obtenues.

12 juillet 2020

Les nanomédicaments sont considérés comme des thérapies prometteuses pour le traitement du cancer. Cependant, leur utilisation clinique reste encore limitée, dû en partie au fait que leur comportement biologique n'est pas encore vraiment élucidé. Extraire des théories générales à partir de la grande variété de nanoparticules et des conditions de leur utilisation reste en effet difficile, et les techniques pertinentes font défaut pour obtenir des informations in situ.

Dans ce travail, ces deux aspects du problème sont abordés en combinant des nanoparticules modèles de nature variable avec des outils in situ basés sur des techniques de diffusion de aux petits angles (SAS, rayons X ou neutrons). La stratégie repose sur le développement d’une bibliothèque de nanoparticules greffées de polymères avec des cœurs d’or identiques, afin de réaliser une étude systématique de leurs interactions avec les systèmes biologiques. Il est ainsi montré qu'une modulation de la chimie des polymères modifie les propriétés de surface, tout en conservant la même structure des nanoparticules, ce qui permet une comparaison fiable entre les objets.

Quatre aspects spécifiques ont été plus particulièrement examinés: la stabilité colloïdale, la captation cellulaire, la toxicité et la diffusion dans la matrice extracellulaire. De manière intéressante, il a été montré que la copolymérisation entre les monomères hydrophobes et chargés positivement contribue à réduire significativement la toxicité des nano-objets tout en conservant une bonne internalisation cellulaire. Les techniques SAS ont ainsi fourni des informations précieuses in situ sur l'évolution et la migration des nanoparticules dans des environnements biologiquement pertinents (milieux de culture cellulaire et matrice extracellulaire). [1, 2, 3]

12 juin 2020

Dans la production industrielle de méthanol (CH3OH), l'atome de carbone est usuellement issu du méthane (CH4), provenant pour l'essentiel de gisements de pétrole, gaz naturel et de schistes. Une nouvelle stratégie pour préparer le méthanol à partir de l'acide formique (HCOOH), lui-même issu du CO2, est présentée par une équipe du NIMBE/LCMCE. Le procédé utilise la dismutation* de formiates silylés (HCOO--Si-R3) en méthoxysilanes (CH3-O-Si-R3), réaction catalysée par des complexes de ruthénium. Le méthanol est ensuite obtenu par simple hydrolyse. Des solutions aqueuses de méthanol (> 1 ml) ont été ainsi obtenues avec un rendement élevé (> 70 %). De plus, il est montré que les sous-produits siliciés de la réaction peuvent être recyclés avec un réactif bon marché et facilement disponible. Le procédé se révèle ainsi durable et respectueux de l'environnement.

14 avril 2020

Les études sur l'influence de rayonnements de toutes natures sur la matière biologique ont des enjeux à la fois pour la protection de la santé et pour les moyens thérapeutiques qu'elles peuvent offrir. Radiobiologie (effets de particules ionisantes) et photobiologie (effets de la lumière) contribuent chacun dans leur domaine.

Par une expérience originale combinant faisceaux d'électrons et de lumière une collaboration de l'Université Paris-Saclay, impliquant le LIDYL et le NIMBE, associée à la start up ITeox, montre que les effets des deux types de faisceau présente des similarités, en particulier dans la formation d’états excités de l'ADN, et des différences dans la nature des états excités formés qu'il faudra  explorer.

07 janvier 2020

Formuler un substitut sanguin capable de transporter efficacement l’oxygène, sans toxicité biologique ou chimique, et dont la préparation serait peu coûteuse pour de très grandes quantités, est un graal qui remonte au XVIIème siècle [1]. De nombreuses solutions ont été avancées, notamment à base d’hémoglobines, protéines d’origine humaine, animale ou bactérienne qui transportent l’oxygène dans le sang. Aucune piste n’a permis jusqu’à présent de proposer un produit acceptable par les autorités de santé.

Une équipe d'IRAMIS, en collaboration avec deux équipes de l'institut Frédéric Joliot, et avec une jeune start-up : LBP propose une nouvelle voie : Il est montré que la molécule CB5(OH)10 est capable de complexer efficacement dans sa cavité le dioxygène d'une solution physiologique [2]. CB5(OH)10 appartient à la famille des cucurbiturils, en référence à leur forme qui ressemble à celle d'une citrouille. La propriété d'encapsulation du dioxygène par CB5(OH)10 est comparable, en son principe, à celle de l'hémoglobine, principal vecteur de transport du dioxygène dans le sang. La start-up ambitionne de proposer un substitut sanguin entièrement thermostable et synthétique, donc sans aucun risque infectieux.

21 décembre 2020

Les spectres de photoémission reflètent la structure électronique des matériaux. Du fait même de la méthode, le système observé n'est plus dans son état fondamental mais présente des excitations de quasi-particules (paires électron-trou), ainsi que des effets à plusieurs corps qui ne peuvent être compris simplement comme l’excitation de particules renormalisée. Les pics principaux d'un spectre de photoémission correspondent généralement à la structure de bande intrinsèque et présentent une dispersion en énergie en fonction de l'angle d’émission. Des "répliques" de ces pics, appelés satellites, sont aussi observables. Comme elles sont entièrement dues aux interactions électroniques, elles peuvent en principe être utilisées pour mesurer la force de corrélation électronique dans un matériau.

Cependant, le plus souvent les spectres mesurés comprennent d'autres contributions qu'il restait jusqu'à présent très difficile à séparer. Notre étude montre comment l'intensité des pics satellites intrinsèques peut être extraite des spectres résolus angulairement mesurés et couplés avec des informations obtenues par une approche théorique, sur l’origine de satellites non-dispersifs. Par cet ensemble de méthodes, la photoémission résolue en angle (ARPES) peut être utilisée pour fixer a minima et sans ambiguïté une limite inférieure du degré de corrélation électronique.

20 octobre 2020

Les poudres de ciments, ingrédients de base des mortiers et bétons, sont composés d’un grand nombre de minéraux de structures très variées. L'étude cristallographique et l’analyse par diffraction des rayons X de chacun des minéraux et du système complexe multiphasé qu’est un ciment font partie des étapes incontournables pour comprendre les liens entre les conditions d’élaboration et la structure du matériau et ses propriétés.

Des ciments spécifiques sont à l’étude au LSI en vue d’optimiser leurs performances tant pour les matériaux de structure que pour les matrices de stockage des déchets radioactifs ou de traitement d’effluents contaminés. Les recherches menées profitent largement de l'apport de la nouvelle plateforme de diffractomètres implantée à l'Ecole Polytechnique et ouverte à la communauté scientifique du plateau de Saclay.

 

06 octobre 2020

La compréhension de la façon dont les spins s'orientent et peuvent être manipulés aux échelles très rapide, pico et femtoseconde, a des implications pour les applications de traitement et de stockage des données ultra-rapides et à faible consommation d'énergie.

Une équipe de recherche internationale à laquelle contribue Jean-Eric Wegrowe du Laboratoire des solides irradiés met en évidence expérimentalement la dynamique intrinsèque du spin inertiel dans les couches minces ferromagnétiques, sous la forme d'une nutation de l'aimantation à une fréquence de ~0,5 THz. Ceci montre que le temps de relaxation du moment angulaire dans les ferromagnétiques est de l'ordre de la dizaine de picosecondes.

Ce travail a été publié dans Nature Physics le 28 septembre 2020.

 

28 avril 2020

Le phosphore noir (Black phosphorus : BP) est constitué d'un empilement de couches monoatomiques de phosphore, liées entre elles uniquement par des forces de Van der Waals. Ce matériau 2d suscite actuellement un grand intérêt en raison de sa bande interdite largement accordable en fonction de l'épaisseur du matériau, de la très grande mobilité de ses porteurs, pour son application dans les transistors à effet de champ (FET), et l'émergence possible d'états topologiquement protégés. Il a été démontré qu'une action électrostatique ou l'évaporation de métaux alcalins, donneurs d'électrons, peuvent être utilisés avec succès pour doper le BP et passer d'une phase semi-conductrice à une phase semi-métallique avec des canaux de transport en cône de Dirac (relation de dispersion linéaire).

Les expérimentateurs et théoriciens du Laboratoire de Solides Irradiés (LSI) ont ainsi étudié les états électroniques excités du phosphore noir après le dépôt par évaporation d'une dose croissante d'atomes alcalins. Le dispositif expérimental FemtoARPES* (photoémission résolue en angle) du LSI a été utilisé pour suivre la fermeture de la bande interdite avec une précision inégalée. Cette ingénierie de la structure de bande permet de concevoir des dispositifs dotés de fonctionnalités électroniques et optoélectroniques améliorées et optimisées.

 

 

Retour en haut