| | | | | | | webmail : intra-extra| Accès VPN| Accès IST| Contact | English
Univ. Paris-Saclay

Faits marquants 2019

11 septembre 2019

La réduction catalytique de composés organiques comportant des liaisons C=O suscite de nombreuses études en chimie fine pour former des molécules d’intérêt (éthers, alcools…), mais l’obtention sélective d’un produit de réaction est parfois difficile. Le choix du catalyseur et du réducteur joue ici un rôle essentiel.

L‘équipe LCMCE du NIMBE (CEA/CNRS) a utilisé pour la première fois un composé d’actinide, dérivé d’un ion très courant dans l’environnement et l’industrie nucléaire, i.e. l’ion uranyle [UO2]2+, pour effectuer la réduction catalytique d’aldéhydes par des hydrosilanes. Ce catalyseur d’uranium (VI) s’avère très efficace et combiné avec une modulation de l’encombrement stérique du silane, des éthers ou des alcoolsilylés sont obtenus sélectivement. À partir d’études cinétiques et de caractérisation des espèces organiques formées et des complexes de l’uranyle, un mécanisme catalytique est proposé.

06 septembre 2019

Une collaboration entre les équipes du LIDYL au CEA Saclay et de l'ATP du Lawrence Berkeley National Lab (LBNL) vient d'élucider les mécanismes d’absorption d’un faisceau laser ultra-intense, lors de sa réflexion sur un plasma dense formé à la surface d’une cible solide. Ces mécanismes, jusqu’alors non identifiés pour des intensités lasers > 1018 W.cm-2, interviennent dans de nombreux processus laser-plasma, tels que la production de faisceaux d’électrons et d’ions relativistes ou de faisceaux de lumière de courte longueur d'onde (émission d’harmoniques Doppler d’ordre élevé), aux multiples applications (spectroscopies, irradiations, médecine…). La compréhension fine de ces mécanismes, rendue possible grâce la combinaison de résultats expérimentaux et numériques de premier plan, permettra d’optimiser ces nouvelles sources de particules et de lumière.

11 juillet 2019
La métrologie (spectroscopie, mesures de temps ou de distances) ou encore la réalisation de réseaux optiques quantiques nécessitent des sources de photons uniques efficaces. Une équipe du SPEC à Saclay, en collaboration avec l'IQST d'Ulm en Allemagne, propose une voie originale pour obtenir une source de photons microondes uniques, simple, efficace et brillante. Cette nouvelle voie exploite un régime de fort couplage lumière-matière, rendu accessible grâce aux développements récents des circuits électriques quantiques.

 

20 mai 2019

Divers procédés chimiques permettent de fonctionnaliser des nanoparticules, en particulier via le greffage de polymères. C'est dans le cadre d’une collaboration internationale, que les chercheurs du LSI, en collaboration avec le Politecnico de Turin (Italie), l’ETH de Zurich (Suisse) et l’IPF de Dresde (Allemagne), ont développé une approche photochimique simple et robuste permettant, pour la première fois, de synthétiser des nanoparticules "greffées" de taille inférieure à 100 nm. La méthode est basée sur un procédé de photosynthèse par illumination UV, qui évite l’utilisation des métaux toxiques comme catalyseurs, tout en réduisant les coûts énergétiques de fabrication (synthèse à température ambiante).

Deux configurations ont été obtenues : des assemblages homogènes ayant des propriétés hydrophiles (lipophiles) et des structures Janus amphiphiles, présentant une hétérogénéité fonctionnelle (hydrophile-hydrophobe ou lipophile-lipophobe). Ces nouvelles nanostructures présentent un grand intérêt pour caractériser les interactions avec les bicouches lipidiques représentatives des membranes cellulaires.

 

20 mai 2019

L'imagerie stéréoscopique, fournie par nos deux yeux, nous donne une vision "en relief" des objets qui nous entourent. En séparant en deux faisceaux une unique impulsion laser harmonique dans le domaine des rayons X, il devient possible d'obtenir de façon similaire des images tridimensionnelles de nanostructures, avec une résolution temporelle donnée par la durée de l'impulsion. Cette nouvelle possibilité ouvre de nouvelles applications en imagerie ultra-rapide à faible dose, plus particulièrement intéressantes dans le domaine de la biologie et la médecine du futur.

23 avril 2019

Cette étude propose une méthode innovante de détection de protéines intracellulaires qui associe fluorescence et résonance magnétique, en combinant l’utilisation d’un fluorophore activable de très petite taille et l’exploitation de la grande sensibilité d’un traceur RMN non toxique, le xénon, dont le spin nucléaire est hyperpolarisé. Les biosondes ainsi constituées sont ainsi doublement activables, combinant un signal de fluorescence et un signal de RMN du xénon-129 spécifiques lorsque la cible est rencontrée.

21 avril 2019

Les membranes d’oxyde d’aluminium nanoporeuses sont des systèmes modèles permettant d’étudier le comportement de la matière sous confinement. Leurs utilisations pour des études de nano-moulage, de microfluidique ou en biologie sont ainsi nombreuses. Une équipe du laboratoire PHENIX (Université Pierre et Marie Curie) et du laboratoire Léon Brillouin (IRAMIS, CEA Saclay) ont étudié in-situ l’adsorption de polymères chargés dans ces matériaux modèles par une approche combinant la réflectivité de neutrons et la microscopie électronique.

25 mars 2019

La silice ou dioxyde silicium (SiO2) est un des constituants principaux (60 %) de l'écorce terrestre sous forme de sable ou de roche. Matériau transparent dans le visible, elle est très utilisée pour les composants en optique (lentilles, prismes, fibres optiques…). Les polymorphes de la silice sont nombreux : sa structure peut varier de la plus compacte sous forme cristallisée, i.e monocristal de quartz, à des structures plus ouvertes voire amorphes, impliquant des variations de propriétés du matériau (densité, propriétés mécaniques, indice optique…).

Un verre de silice qui présente un important volume libre, peut être densifié avec un taux significatif sous haute pression (jusqu’à 20 %), mais les mécanismes et évolutions structurales associées sont encore l’objet de controverses, particulièrement entre expériences et modèles théoriques.

En irradiant avec des électrons de 2.5 MeV des silices ayant subi un traitement thermique ou préalablement densifiées par compression, il est montré qu'une densité d’équilibre de l’ordre de 2,26 g/cm3 peut être atteinte, pour une dose d'irradiation de l'ordre de 10 GGy [1].

Ces résultats permettront de mieux comprendre la structure des couches minces de silice, fondamentales pour l’industrie verrière, ou plus spécifiquement de maitriser l'élaboration et le comportement en conditions extrêmes (haute température ou irradiation) de fibres optiques de type "capteur à réseau de Bragg" (*).

11 mars 2019
La métrologie (spectroscopie, mesures de temps ou de distances) ou encore la réalisation de réseaux optiques quantiques nécessitent des sources de photons uniques efficaces. Une équipe du SPEC à Saclay, en collaboration avec l'IQST d'Ulm en Allemagne, démontre expérimentalement une voie originale pour obtenir une source de photons microonde uniques, simple, efficace et brillante. Cette nouvelle voie exploite un régime de fort couplage lumière-matière rendu accessible grâce aux développements récents des circuits électriques quantiques.

 

26 février 2019

Les lasers à impulsions ultra-brèves sont au cœur de la recherche sur l'interaction rayonnement-matière avec de nombreuses applications dans des domaines très variés : femto-chimie, photovoltaïque… Certains de ces lasers nécessitent des développements complexes pour que les impulsions produites répondent par leurs caractéristiques (énergie délivrée, longueur d'onde, forme et stabilité de l'impulsion…) à des besoins spécifiques.

Pour le dispositif d'ATTOLAB, Equipex sur la dynamique ultra rapide coordonné par le LIDYL au CEA, plusieurs dispositifs expérimentaux de physique atomique et moléculaire et de physique du solide seront accessibles, pour lesquels il est nécessaire de produire des impulsions laser de forte énergie (qques 10 mJ) à haute cadence (1 ou 10 kHz) présentant un spectre de longueur d’onde et largeur spectrale et accordables, d'une durée inférieure à 20 femtosecondes (1 femtoseconde = 10-15 s), avec un contrôle extrêmement précis des caractéristiques à l’échelle du champ électrique.

Afin d'atteindre les objectifs des expériences, les chercheurs du laboratoire commun "Impulse", associant le LIDYL à la société Amplitude Technologies, ont réalisé une chaine amplificatrice laser avec une configuration des étages amplificateurs originale, qui permet d’obtenir les caractéristiques requises et au meilleur niveau mondial.

12 février 2019

​​Des chercheurs du SCBM (Institut Joliot) en collaboration avec l'équipe LCMCE du NIMBE (CEA/CNRS) ont mis au point une méthode de marquage au carbone 14 de molécules organiques d’intérêt thérapeutique, basée sur l’échange dynamique de dioxyde de carbone.

Cette méthode de synthèse en une seule étape est moins coûteuse et génère beaucoup moins de déchets radioactifs que les méthodes actuelles. En facilitant certaines études précliniques et cliniques, elle devrait aussi contribuer à accélérer la mise sur le marché de nouveaux médicaments. Cette étude a été publiée dans le " Journal of the American Chemical Society. -JACS".

 

04 février 2019

L'émergence des véhicules électriques et du stockage des énergies renouvelables souligne le besoin d’augmenter la densité énergétique des batteries tout en diminuant leurs coûts et en améliorant leur sécurité. Les batteries magnésium-ion apparaissent comme une excellente alternative aux batteries Li-ion grâce à la forte capacité spécifique du Mg, son faible coût et son abondance sur Terre.

Dans ce travail, une équipe de l’IRAMIS a développé un nouveau matériau d’électrode négative pour les batteries Mg-ion : InSb. Il est démontré qu’une réelle synergie chimique existe entre les deux éléments In et Sb : la combinaison de ces deux métaux permet de montrer pour la première fois la contribution partiellement réversible de Sb dans les alliages pour batteries Mg-ion. Ce travail est publié dans la revue The Journal of Physical Chemistry C.

 

17 janvier 2019

L'électron est une particule élémentaire portant la charge élémentaire "e", une constante fondamentale de la physique. Cependant, dans un conducteur confiné en 2 dimensions soumis à un champ magnétique intense (10 T), les électrons peuvent s’organiser en un nouvel état quantique topologiquement corrélé où le courant électrique peut être transporté par des charges fractionnaires : e/3, e/4, e/5… . Ni fermions (comme les électrons), ni bosons (comme les photons), ces particules élémentaires artificielles sont dénommées anyons, car on pense qu’elles obéissent à une "statistique quantique fractionnaire". Certaines variétés d’anyons pourraient être exploitées pour le "calcul quantique topologique", où l'information quantique est portée par des états bien définis (qubit), car topologiquement protégés.

Une équipe du SPEC CEA, en collaboration avec le Cavendish Laboratory de Cambridge (UK) pour l'élaboration du matériau, a montré que l’on pouvait observer et manipuler des anyons de charge fractionnaire e* = e/3 ou e/5, avec des photons microondes de fréquence f. Ceci est mis en évidence par l'observation, en présence d'une polarisation V et d'un champ microonde de fréquence f, d'un bruit photo-assisté excédentaire, mesuré au-delà d'une tension seuil VJ donnée par la relation de Josephson : e*VJ=hf. Ces résultats sont publiés dans la revue "Science".

La mesure de ce seuil apporte une nouvelle détermination originale de la charge fractionnaire des anyons. Elle donne aussi la preuve que les anyons peuvent absorber ou émettre des photons, ce qui ouvre une voie pour leur manipulation résolue en temps et tenter de mettre en évidence leur statistique fractionnaire.

10 janvier 2019

L’avènement des lasers femtosecondes (1fs = 10-18s) de puissance avec la technique "Chirped Pulse Amplification" (CPA) [1] permet aujourd’hui de délivrer des intensités lumineuses gigantesques (> 1021 W.cm-2) associées à des champs électriques ultra-intenses de l’ordre de 1013 V.m-1. Dans ces conditions extrêmes, la matière devient plasma et le champ laser peut accélérer des particules chargées (électrons/ions) du plasma à des vitesses relativistes en quelques attosecondes (1as = 10-18s). La physique associée à ces nouveaux régimes, appelée physique des Ultra-Hautes Intensités (UHI), est ultra-relativiste, fortement non-linéaire et hors-équilibre, ce qui rend son étude particulièrement importante d’un point de vue fondamental.

Les codes "Particle in Cell" - code PIC - sont particulièrement adaptés pour modéliser ces types de plasmas. Ils permettent de tester finement tous les effets de l'interaction laser-matière, lorsque l'on manipule des impulsions ultra-courtes et ultra-intenses, et surtout permettent de proposer de nouveaux modes expérimentaux. Comparé au régime térawatt, il est ainsi montré que de nouveaux phénomènes apparaissent lors de la focalisation d'une impulsion laser d'une puissance supérieure au pétawatt (> 1 PW = 1015 W) sur une surface solide : du fait de l'effet doppler et de la courbure induite par l'extrême pression de radiation, un facteur 500 est prédit sur l'intensité du champ réfléchi par un "miroir plasma", pouvant alors atteindre 1025 W.cm-2 au point focal.


[1] Le prix Nobel 2019 de Physique a été attribué à Gérard Mourou et Donna Strickland pour la découverte de cette technique d'amplification des impulsions laser.

 

07 janvier 2019

Une large collaboration de chercheurs a mis au point une nouvelle méthode permettant d’améliorer la capacité de stockage et de réduire le coût de production des batteries lithium-ion. La technologie proposée est basée sur l’irradiation des matériaux, de façon similaire à ce qui se fait par exemple dans les industries de traitement des aliments, des médicaments et des eaux usées.

20 mai 2019

Divers procédés chimiques permettent de fonctionnaliser des nanoparticules, en particulier via le greffage de polymères. C'est dans le cadre d’une collaboration internationale, que les chercheurs du LSI, en collaboration avec le Politecnico de Turin (Italie), l’ETH de Zurich (Suisse) et l’IPF de Dresde (Allemagne), ont développé une approche photochimique simple et robuste permettant, pour la première fois, de synthétiser des nanoparticules "greffées" de taille inférieure à 100 nm. La méthode est basée sur un procédé de photosynthèse par illumination UV, qui évite l’utilisation des métaux toxiques comme catalyseurs, tout en réduisant les coûts énergétiques de fabrication (synthèse à température ambiante).

Deux configurations ont été obtenues : des assemblages homogènes ayant des propriétés hydrophiles (lipophiles) et des structures Janus amphiphiles, présentant une hétérogénéité fonctionnelle (hydrophile-hydrophobe ou lipophile-lipophobe). Ces nouvelles nanostructures présentent un grand intérêt pour caractériser les interactions avec les bicouches lipidiques représentatives des membranes cellulaires.

 

25 mars 2019

La silice ou dioxyde silicium (SiO2) est un des constituants principaux (60 %) de l'écorce terrestre sous forme de sable ou de roche. Matériau transparent dans le visible, elle est très utilisée pour les composants en optique (lentilles, prismes, fibres optiques…). Les polymorphes de la silice sont nombreux : sa structure peut varier de la plus compacte sous forme cristallisée, i.e monocristal de quartz, à des structures plus ouvertes voire amorphes, impliquant des variations de propriétés du matériau (densité, propriétés mécaniques, indice optique…).

Un verre de silice qui présente un important volume libre, peut être densifié avec un taux significatif sous haute pression (jusqu’à 20 %), mais les mécanismes et évolutions structurales associées sont encore l’objet de controverses, particulièrement entre expériences et modèles théoriques.

En irradiant avec des électrons de 2.5 MeV des silices ayant subi un traitement thermique ou préalablement densifiées par compression, il est montré qu'une densité d’équilibre de l’ordre de 2,26 g/cm3 peut être atteinte, pour une dose d'irradiation de l'ordre de 10 GGy [1].

Ces résultats permettront de mieux comprendre la structure des couches minces de silice, fondamentales pour l’industrie verrière, ou plus spécifiquement de maitriser l'élaboration et le comportement en conditions extrêmes (haute température ou irradiation) de fibres optiques de type "capteur à réseau de Bragg" (*).

06 septembre 2019

Une collaboration entre les équipes du LIDYL au CEA Saclay et de l'ATP du Lawrence Berkeley National Lab (LBNL) vient d'élucider les mécanismes d’absorption d’un faisceau laser ultra-intense, lors de sa réflexion sur un plasma dense formé à la surface d’une cible solide. Ces mécanismes, jusqu’alors non identifiés pour des intensités lasers > 1018 W.cm-2, interviennent dans de nombreux processus laser-plasma, tels que la production de faisceaux d’électrons et d’ions relativistes ou de faisceaux de lumière de courte longueur d'onde (émission d’harmoniques Doppler d’ordre élevé), aux multiples applications (spectroscopies, irradiations, médecine…). La compréhension fine de ces mécanismes, rendue possible grâce la combinaison de résultats expérimentaux et numériques de premier plan, permettra d’optimiser ces nouvelles sources de particules et de lumière.

20 mai 2019

L'imagerie stéréoscopique, fournie par nos deux yeux, nous donne une vision "en relief" des objets qui nous entourent. En séparant en deux faisceaux une unique impulsion laser harmonique dans le domaine des rayons X, il devient possible d'obtenir de façon similaire des images tridimensionnelles de nanostructures, avec une résolution temporelle donnée par la durée de l'impulsion. Cette nouvelle possibilité ouvre de nouvelles applications en imagerie ultra-rapide à faible dose, plus particulièrement intéressantes dans le domaine de la biologie et la médecine du futur.

26 février 2019

Les lasers à impulsions ultra-brèves sont au cœur de la recherche sur l'interaction rayonnement-matière avec de nombreuses applications dans des domaines très variés : femto-chimie, photovoltaïque… Certains de ces lasers nécessitent des développements complexes pour que les impulsions produites répondent par leurs caractéristiques (énergie délivrée, longueur d'onde, forme et stabilité de l'impulsion…) à des besoins spécifiques.

Pour le dispositif d'ATTOLAB, Equipex sur la dynamique ultra rapide coordonné par le LIDYL au CEA, plusieurs dispositifs expérimentaux de physique atomique et moléculaire et de physique du solide seront accessibles, pour lesquels il est nécessaire de produire des impulsions laser de forte énergie (qques 10 mJ) à haute cadence (1 ou 10 kHz) présentant un spectre de longueur d’onde et largeur spectrale et accordables, d'une durée inférieure à 20 femtosecondes (1 femtoseconde = 10-15 s), avec un contrôle extrêmement précis des caractéristiques à l’échelle du champ électrique.

Afin d'atteindre les objectifs des expériences, les chercheurs du laboratoire commun "Impulse", associant le LIDYL à la société Amplitude Technologies, ont réalisé une chaine amplificatrice laser avec une configuration des étages amplificateurs originale, qui permet d’obtenir les caractéristiques requises et au meilleur niveau mondial.

10 janvier 2019

L’avènement des lasers femtosecondes (1fs = 10-18s) de puissance avec la technique "Chirped Pulse Amplification" (CPA) [1] permet aujourd’hui de délivrer des intensités lumineuses gigantesques (> 1021 W.cm-2) associées à des champs électriques ultra-intenses de l’ordre de 1013 V.m-1. Dans ces conditions extrêmes, la matière devient plasma et le champ laser peut accélérer des particules chargées (électrons/ions) du plasma à des vitesses relativistes en quelques attosecondes (1as = 10-18s). La physique associée à ces nouveaux régimes, appelée physique des Ultra-Hautes Intensités (UHI), est ultra-relativiste, fortement non-linéaire et hors-équilibre, ce qui rend son étude particulièrement importante d’un point de vue fondamental.

Les codes "Particle in Cell" - code PIC - sont particulièrement adaptés pour modéliser ces types de plasmas. Ils permettent de tester finement tous les effets de l'interaction laser-matière, lorsque l'on manipule des impulsions ultra-courtes et ultra-intenses, et surtout permettent de proposer de nouveaux modes expérimentaux. Comparé au régime térawatt, il est ainsi montré que de nouveaux phénomènes apparaissent lors de la focalisation d'une impulsion laser d'une puissance supérieure au pétawatt (> 1 PW = 1015 W) sur une surface solide : du fait de l'effet doppler et de la courbure induite par l'extrême pression de radiation, un facteur 500 est prédit sur l'intensité du champ réfléchi par un "miroir plasma", pouvant alors atteindre 1025 W.cm-2 au point focal.


[1] Le prix Nobel 2019 de Physique a été attribué à Gérard Mourou et Donna Strickland pour la découverte de cette technique d'amplification des impulsions laser.

 

21 avril 2019

Les membranes d’oxyde d’aluminium nanoporeuses sont des systèmes modèles permettant d’étudier le comportement de la matière sous confinement. Leurs utilisations pour des études de nano-moulage, de microfluidique ou en biologie sont ainsi nombreuses. Une équipe du laboratoire PHENIX (Université Pierre et Marie Curie) et du laboratoire Léon Brillouin (IRAMIS, CEA Saclay) ont étudié in-situ l’adsorption de polymères chargés dans ces matériaux modèles par une approche combinant la réflectivité de neutrons et la microscopie électronique.

11 juillet 2019
La métrologie (spectroscopie, mesures de temps ou de distances) ou encore la réalisation de réseaux optiques quantiques nécessitent des sources de photons uniques efficaces. Une équipe du SPEC à Saclay, en collaboration avec l'IQST d'Ulm en Allemagne, propose une voie originale pour obtenir une source de photons microondes uniques, simple, efficace et brillante. Cette nouvelle voie exploite un régime de fort couplage lumière-matière, rendu accessible grâce aux développements récents des circuits électriques quantiques.

 

11 mars 2019
La métrologie (spectroscopie, mesures de temps ou de distances) ou encore la réalisation de réseaux optiques quantiques nécessitent des sources de photons uniques efficaces. Une équipe du SPEC à Saclay, en collaboration avec l'IQST d'Ulm en Allemagne, démontre expérimentalement une voie originale pour obtenir une source de photons microonde uniques, simple, efficace et brillante. Cette nouvelle voie exploite un régime de fort couplage lumière-matière rendu accessible grâce aux développements récents des circuits électriques quantiques.

 

17 janvier 2019

L'électron est une particule élémentaire portant la charge élémentaire "e", une constante fondamentale de la physique. Cependant, dans un conducteur confiné en 2 dimensions soumis à un champ magnétique intense (10 T), les électrons peuvent s’organiser en un nouvel état quantique topologiquement corrélé où le courant électrique peut être transporté par des charges fractionnaires : e/3, e/4, e/5… . Ni fermions (comme les électrons), ni bosons (comme les photons), ces particules élémentaires artificielles sont dénommées anyons, car on pense qu’elles obéissent à une "statistique quantique fractionnaire". Certaines variétés d’anyons pourraient être exploitées pour le "calcul quantique topologique", où l'information quantique est portée par des états bien définis (qubit), car topologiquement protégés.

Une équipe du SPEC CEA, en collaboration avec le Cavendish Laboratory de Cambridge (UK) pour l'élaboration du matériau, a montré que l’on pouvait observer et manipuler des anyons de charge fractionnaire e* = e/3 ou e/5, avec des photons microondes de fréquence f. Ceci est mis en évidence par l'observation, en présence d'une polarisation V et d'un champ microonde de fréquence f, d'un bruit photo-assisté excédentaire, mesuré au-delà d'une tension seuil VJ donnée par la relation de Josephson : e*VJ=hf. Ces résultats sont publiés dans la revue "Science".

La mesure de ce seuil apporte une nouvelle détermination originale de la charge fractionnaire des anyons. Elle donne aussi la preuve que les anyons peuvent absorber ou émettre des photons, ce qui ouvre une voie pour leur manipulation résolue en temps et tenter de mettre en évidence leur statistique fractionnaire.

11 septembre 2019

La réduction catalytique de composés organiques comportant des liaisons C=O suscite de nombreuses études en chimie fine pour former des molécules d’intérêt (éthers, alcools…), mais l’obtention sélective d’un produit de réaction est parfois difficile. Le choix du catalyseur et du réducteur joue ici un rôle essentiel.

L‘équipe LCMCE du NIMBE (CEA/CNRS) a utilisé pour la première fois un composé d’actinide, dérivé d’un ion très courant dans l’environnement et l’industrie nucléaire, i.e. l’ion uranyle [UO2]2+, pour effectuer la réduction catalytique d’aldéhydes par des hydrosilanes. Ce catalyseur d’uranium (VI) s’avère très efficace et combiné avec une modulation de l’encombrement stérique du silane, des éthers ou des alcoolsilylés sont obtenus sélectivement. À partir d’études cinétiques et de caractérisation des espèces organiques formées et des complexes de l’uranyle, un mécanisme catalytique est proposé.

23 avril 2019

Cette étude propose une méthode innovante de détection de protéines intracellulaires qui associe fluorescence et résonance magnétique, en combinant l’utilisation d’un fluorophore activable de très petite taille et l’exploitation de la grande sensibilité d’un traceur RMN non toxique, le xénon, dont le spin nucléaire est hyperpolarisé. Les biosondes ainsi constituées sont ainsi doublement activables, combinant un signal de fluorescence et un signal de RMN du xénon-129 spécifiques lorsque la cible est rencontrée.

12 février 2019

​​Des chercheurs du SCBM (Institut Joliot) en collaboration avec l'équipe LCMCE du NIMBE (CEA/CNRS) ont mis au point une méthode de marquage au carbone 14 de molécules organiques d’intérêt thérapeutique, basée sur l’échange dynamique de dioxyde de carbone.

Cette méthode de synthèse en une seule étape est moins coûteuse et génère beaucoup moins de déchets radioactifs que les méthodes actuelles. En facilitant certaines études précliniques et cliniques, elle devrait aussi contribuer à accélérer la mise sur le marché de nouveaux médicaments. Cette étude a été publiée dans le " Journal of the American Chemical Society. -JACS".

 

04 février 2019

L'émergence des véhicules électriques et du stockage des énergies renouvelables souligne le besoin d’augmenter la densité énergétique des batteries tout en diminuant leurs coûts et en améliorant leur sécurité. Les batteries magnésium-ion apparaissent comme une excellente alternative aux batteries Li-ion grâce à la forte capacité spécifique du Mg, son faible coût et son abondance sur Terre.

Dans ce travail, une équipe de l’IRAMIS a développé un nouveau matériau d’électrode négative pour les batteries Mg-ion : InSb. Il est démontré qu’une réelle synergie chimique existe entre les deux éléments In et Sb : la combinaison de ces deux métaux permet de montrer pour la première fois la contribution partiellement réversible de Sb dans les alliages pour batteries Mg-ion. Ce travail est publié dans la revue The Journal of Physical Chemistry C.

 

07 janvier 2019

Une large collaboration de chercheurs a mis au point une nouvelle méthode permettant d’améliorer la capacité de stockage et de réduire le coût de production des batteries lithium-ion. La technologie proposée est basée sur l’irradiation des matériaux, de façon similaire à ce qui se fait par exemple dans les industries de traitement des aliments, des médicaments et des eaux usées.

 

Retour en haut