| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST | English
Univ. Paris-Saclay

Faits marquants scientifiques 2014

15 mai 2014

Les structures carbonées nanométriques (nanotubes, fullerènes, plan de graphène,…) possèdent des propriétés de conduction électronique remarquables, dont on essaye de tirer parti pour réaliser de nouveaux dispositifs (capteurs, composant électronique, …), mais à condition de maitriser les différents procédés de leur mise en œuvre. Une équipe de l'IRAMIS/NIMBE vient d'apporter la démonstration d'un procédé générique de fonctionnalisation locale par microscopie électrochimique, à partir de films minces de graphène oxydé.

Le graphène oxydé peut être aisément déposé sur une très grande variété de substrats, et l’étape clé de notre méthode consiste à réduire localement cette couche carbonée à l’aide d’une microélectrode plongée dans une solution électrolytique. Les zones réduites, de taille micrométriques, deviennent alors conductrices, permettant d'y fixer une très grande variété de fonctions chimiques par simple électrogreffage de sels de diazonium.

Ce procédé, à base de graphène initialement oxydé, permet d'implanter localement et de façon contrôlée une grande diversité de fonctions chimiques à la surface de divers substrats, en particulier des isolants.

 

07 juillet 2014

La résonance magnétique nucléaire (RMN) est une technique d'analyse chimique très puissante. Au-delà du contraste usuel, fonction des temps de relaxation des spins nucléaires, le décalage en fréquence du signal RMN, issu d'atomes avec un environnement moléculaire différent ("décalage chimique"), offre une sélectivité spectroscopique.

Sur ce principe, des agents de contraste RMN sont obtenus en utilisant des atomes lourds engagés dans des complexes supramoléculaires. Le LSDRM a en particulier fait sa spécialité dans la conception de telles biosondes à base de RMN 129Xe, où le xénon polarisé en spin est encapsulé dans des molécules-cages fonctionnalisées par des ligands, conçus pour reconnaître des cibles spécifiques. Dans cette approche, l'effet de sélectivité spectrale (la résonance du xénon encagé prenant une fréquence spécifique, fonction par exemple de la nature précise de la cage) est ici complété par la haute sensibilité de la RMN apportée par l’hyperpolarisation de spin du gaz rare.

Pour concevoir et utiliser au mieux ces sondes, les équipes du LSDRM et du LCMCE de l'IRAMIS/NIMBE, en collaboration avec une équipe de l'IBiTec-S/SCBM, ont cherché à modéliser leurs paramètres RMN. Dans une publication dans Angewandte Chemie, ils rapportent les résultats remarquables obtenus par simulation, en excellent accord avec leurs résultats expérimentaux.

07 février 2014

La résonance magnétique nucléaire permet l’étude de la structure et de la dynamique moléculaire par l’acquisition des spectres à haute résolution et la mesure des temps de relaxation. Les temps de relaxation mesurables sont typiquement de l'ordre de la période de précession du moment magnétique, lors de son retour à l'équilibre, et donc fonction de la valeur du champ magnétique polarisant. Une collaboration de chercheurs de l'ENS-Paris et de l'IRAMIS a développé une méthode originale permettant, par une variation du champ magnétique polarisant, de mesurer les relaxations lentes et rapides d'un même système moléculaire, tout en préservant une haute résolution spectrale.

 

17 novembre 2014

Au quotidien, les aimants permanents sont partout présents dans les dispositifs technologiques qui nous entourent. Aujourd’hui, il y en a 4 types principaux sur le marché mondial : NdFeB, ferrite, SmCo et AlNiCo, dont 65% contiennent des terres rares, essentiellement du néodyme. Depuis 2008, la Chine a établi un monopole de production des terres rares avec près de 95 % de la production mondiale, ce qui a entrainé une forte augmentation des prix ces dernières années. Suite aux restrictions de la Chine sur ses exportations, ce problème d’approvisionnement en terres rares est là pour durer.

Il y a donc un fort enjeu économique à trouver des alternatives à l'emploi des terres rares dans les aimants permanents. Une des voies, sur laquelle les équipes du LLB, de l’INSA de Toulouse et de l'ITODYS travaillent en collaboration, est d’utiliser l’anisotropie de forme pour augmenter la coercivité des matériaux. Il s’agit d’une idée ancienne, déjà utilisée en autre dans les aimants AlNiCo. Les progrès récents dans la synthèse de nano-objets magnétiques ont permis de revisiter l’idée et de l’appliquer à des métaux simples. Il a ainsi été possible de concevoir des matériaux à base de cobalt, ayant des propriétés intrinsèques équivalentes à celles des meilleurs aimants SmCo.

 

 

Retour en haut