| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST
Univ. Paris-Saclay

Faits marquants scientifiques 2010

27 septembre 2010
B. Kundys, M. Viret, D. Colson (IRAMIS/SPEC) et D. O. Kundys

 

Les chercheurs de l'IRAMIS/SPEC viennent de montrer qu'en plus du couplage entre polarisation électrique, magnétisme et distorsion du réseau cristallin, l'oxyde BiFeO3 présente un couplage entre éclairement et déformation. Du fait de ces couplages, ce type de matériaux "multifonctionnels" offre la possibilité de commuter, sous l'action d'un signal externe d'une nature donnée (éclairement, contrainte, champ magnétique ou électrique externe), une propriété du matériau de nature différente (aimantation, polarisation électrique, déformation…). La possibilité d'observer l'ensemble de ces couplages (photostriction, électromagnétisme, électrostriction …) dans un même matériau, ouvre la voie à la conception d'une très grande variété de capteurs avec un extraordinaire potentiel applicatif.

01 septembre 2010
J. Vidal, S. Botti, P. Olsson, J.-F. Guillemoles et L. Reining
Les cellules photovoltaïques élaborées à partir de couches minces atteignent aujourd'hui des performances à même de concurrencer les cellules à base de silicium les plus performantes (~ 20 %). La technologie couche mince la plus prometteuse repose sur le composé CuIn(S,Se)2 qui se révèle être un excellent absorbeur de lumière. Malgré les nombreuses études théoriques et expérimentales menées sur ce composé, l'origine de son efficacité restait encore un mystère. Par des simulations ab-initio, une équipe du LSI, en partenariat avec le CNRS et EDF, lève le voile sur un mécanisme complexe permettant d'expliquer le rendement remarquable de ces cellules.
01 juin 2010

(french version English version)

Les expériences de violation d'une inégalité de Bell avec deux objets séparés dans l'espace sont considérées comme la meilleure preuve de la nature intrinsèquement quantique du monde : les états des deux objets peuvent être si intimement liés (les physiciens disent "intriqués") que parler de l'état de chacun d'eux n'a plus de sens, même lorsqu'ils sont très éloignés l'un de l'autre.

03 juillet 2010

Contact : P. Viel

L'étude de molécules complexes ou de matériaux biologiques individuels nécessite de  savoir immobiliser ces objets sans altérer leurs fonctions actives. A l'image des bandes de papier tue-mouches ou plus précisément comme un scotch double face d'épaisseur moléculaire, le LCSI a développé des surfaces possédant des propriétés auto-adhésives capables de "coller" un grand nombre de matériaux organiques, minéraux et même biologiques. La fonctionnalisation de la surface du substrat est obtenue par le greffage pérenne de monocouches moléculaires robustes.

[1].

12 octobre 2010
Contacts IRAMIS/CIMAP : Philippe Boduch, Alicja Domaracka et Hermann Rothard.
Des premières expériences d'irradiation de glaces ternaires (H2O-CO-NH3) par des ions lourds conduites au GANIL par les chercheurs de l'IRAMIS/CIMAP ont permis de mettre en évidence la formation de molécules complexes pré-biotiques. Certaines hypothèses sur l'origine de la vie sur Terre proposent une origine extra-terrestre des briques élémentaires nécessaires à la vie. Les glaces cométaires ou entourant les grains de poussières des nuages denses interstellaires pourraient être ainsi le berceau de la formation de ces molécules prébiotiques. Le résultat obtenu montre que l'irradiation constante subie par ces glaces normalement inertes car très froides, permet la formation de ces molécules complexes.
20 septembre 2010

Par comparaison avec des données expérimentales, spécifiquement obtenues dans ce but à l'IRAMIS/SPAM, il est possible de sélectionner la meilleure méthode ab initio, permettant de fixer les paramètres de modèles dits de "champ de force", pour reproduire fidèlement la structure d'assemblées d'atomes aussi complexe que celles constituant les protéines (macromolécule constituée d'acides aminés) ou les peptides (petits polymères d'acides aminés, n<50).

13 avril 2010
J. Deschampsab, F. Audonnetac, N. Brodie-Linderad, M. Schoeffela et C. Alba-Simionescoac

Quelle est la plus basse température à laquelle l'eau peut rester liquide ?

La surfusion de l'eau est un phénomène bien connu et des records de température ont été atteint (~ 235 K = -40 °c) par cette voie. Un autre moyen pour maintenir de l'eau liquide à des températures négatives consiste à confiner le liquide dans une structure nanométrique de matériaux poreux. A cette échelle, du fait du volume limité, les effets de surface-interface deviennent importants et une température record de 206 K (pour un diamètre de pore de 2.3 nm) a pu être atteinte !

 

14 juin 2010
C. Bartolacci1, M. Laroche1, H. Gilles1, S. Girard1, T. Robin2, B. Cadier2 et A. Buisson3

1Equipe Lasers, Instrumentation Optique et Applications (LIOA), CIMAP / ENSICAEN, 6 BLVD Maréchal Juin, 14050  Caen  cedex,

2 iXFiber,  rue Paul Sabatier,  22300  Lannion  ixfiber

3 Laboratoire CI-NAPS, Centre CYCERON, Boulevard Becquerel, 14052 Caen cedex

03 mai 2010

Contacts : N. Fedorov1 and S. Guizard1, A.Vasil'ev2 and A.Belsky3, M.Kirm4, V.Nagirny4 and E.Feldbach4


 

Pour caractériser un flux de rayonnement ou de particules (électrons, rayons g, photons X ou UV) les détecteurs à scintillation utilisent un matériau émettant une quantité de lumière proportionnelle à l'énergie apportée par la particule incidente. Le processus de scintillation est ainsi au cœur de la métrologie des rayonnements ionisants, en particulier en physique et médecine nucléaire, radiocristallographie ou analyse par fluorescence X. Les expériences récentes de l'équipe du LSI permettent de mieux comprendre les processus élémentaires d'excitation électronique en jeu et d'expliquer les mécanismes physiques à l'origine de la réponse non linéaire des matériaux scintillateurs, source d'imprécision de la mesure, qu'il devient possible de corriger. 

Une des qualités principales que l'on attend des matériaux scintillateurs est leur capacité à délivrer un signal de luminescence proportionnel au flux et à l'énergie des particules incidentes. Dans certaines situations, cette réponse n'est pas proportionnelle : on parle d'effets de saturation ou de "quenching" de la luminescence.

Une autre observation est la forte variabilité de la constante de temps de déclin de la luminescence suivant le type de particule ou de rayonnement incident (électrons, rayons g, photons X ou UV) : dans le cas du Cadmium tungstate (CdWO4) considéré dans notre étude, les valeurs observées s'étendent de 800 ns à 15 µs. Le but de notre étude sur les matériaux scintillateurs est de comprendre l'origine physique de la réponse non linéaire, et de la variabilité des constantes de temps.

11 novembre 2010
Y. Li1, V. Balédent2, G. Yu3, N. Barišić1, K. Hradil3, R.A. Mole3, Y. Sidis2, P. Steffens4, X. Zhao1, P. Bourges2, M. Greven1

1 Department of Physics, Stanford University, Stanford, California 94305, USA
2 Laboratoire Léon Brillouin (LLB), CEA-CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France
3 Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II), TU München, D-85747 Garching,   Germany
4 Institut Laue Langevin (ILL), 38042 Grenoble CEDEX 9, France

Pour les physiciens de la matière condensée, comprendre l’origine de la supraconductivité à haute température critique (Tc), telle qu'elle est observée dans les oxydes de cuivre, demeure un défi majeur en ce début de XXIème siècle. Diverses hypothèses sont proposées et testées, mais après avoir montré l’émergence d’un ordre magnétique dans la phase dite de "pseudo-gap" (phase électronique adjacente à la phase supraconductrice), les dernières expériences, réalisées par des chercheurs de l'IRAMIS/LLB par diffusion de neutrons polarisés, révèlent le spectre des excitations magnétiques associé à cet ordre. Ce résultat conforte l'hypothèse d'une origine magnétique au couplage entre électrons à l'origine de la supraconductivité à haut Tc.


04 mars 2010
D. S. Inosov1, J. T. Park1, P. Bourges2, D. L. Sun1, Y. Sidis2, A. Schneidewind3,4, K. Hradil4,5, D.Haug1, C. T. Lin1, B. Keimer1, and V. Hinkov

1 Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
2 Laboratoire Léon Brillouin, CEA-CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France
3 Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II), TU München, D-85747 Garching, Germany

A la grande surprise de la communauté scientifique, une supraconductivité à haute température critique (Tc > 50K) a été découverte en mars 2008 dans des composés à base de fer [1]. En effet, le fer magnétique était plutôt considéré comme antagoniste de la supraconductivité. De plus, c'est la première fois qu'on atteint une température critique si élevée sans cuivre. Comme les oxydes de cuivres supraconducteurs, ces nouveaux supraconducteurs présentent une structure lamellaire avec des couches de fer et de pnictures (composés à base de As, P... , éléments de la 15ème colonne de la table de Mendeleïev) entre lesquelles s'intercalent des plans "réservoirs de charges" (voir la figure). Ces matériaux présentent aussi un diagramme de phase proche de celui des cuprates, avec en fonction du dopage une phase antiferromagnétique contiguë à la phase supraconductrice [2].

30 mars 2010

(french version English version)

Les chercheurs du Groupe Instabilités et Turbulence de l'IRAMIS-SPEC ont montré expérimentalement que la transition de blocage de matériaux granulaires amorphes, qui se traduit par l'apparition d'une rigidité globale, se manifeste par la croissance d'une longueur de corrélation présentant un caractère critique.

(figure de titre : Champ de déplacement au voisinage d'un intrus tiré dans un milieu granulaire dense)

 

                 

fig_0001

Illustration 1: Schéma de l'expérience. Une particule intruse est tirée à force constante parmi les autres grains.

 

Illustration 2: Diagramme d'état, dans lequel deux transitions apparaissent : la transition de fluidification (courbe) et la transition de Jamming (vertical)

 

Vous avez un grain? Ils en ont des milliers ! Dans cette expérience du Groupe Instabilités et Turbulences, une assemblée amorphe de grains en 2D est compressée dans une cellule sous vibration horizontale (voir illustration 1) jusqu'à atteindre les états les plus denses possible : une transition apparaît alors, dite transition de blocage (Jamming) [1,2], donnant une rigidité globale au matériau par percolation dynamique des chaines de force.

Les caractéristiques fines de cette transition ont été étudiées au cours de la thèse de Raphaël Candelier au moyen d'une particule « intrus » tirée à force constante dans le milieu. Un diagramme de phase a été dressé, qui met en évidence la présence d'une ligne de fluidification, au dessus de la quelle l'intrus avance sans s'arrêter (comme dans un liquide visqueux) et en dessous de laquelle l'intrus adopte un mouvement intermittent, l'intensité des fluctuations se renforçant au voisinage de la transition de Jamming.

Sous la ligne de fluidification, la réponse à cette perturbation fortement non-linéaire présente une intermittence spatio-temporelle illustrée dans une vidéo :  Voir la vidéo

Les images brutes des grains sont représentées dans la partie inférieure, tandis que la partie supérieure montre ces grains après traitement d'image, la couleur codant leur vitesse instantanée. Il apparaît clairement dans cette configuration - très proche de la transition - que le matériau « hésite » entre un état très rigide et un état très fluide. Les réorganisations à longue protée que l'on peut apercevoir dénotent le caractère critique de cette transition qui a été mis en évidence quantitativement par une analyse du type « crackling noise » révélant des lois d'échelles.

Cette phénoménologie, explorée ici expérimentalement par un procédé original, est décrite dans deux publications récentes [3,4].

 

16 mars 2010
J. Scheibert, C. Guerra, F. Célarié, D. Dalmas and D. Bonamy

Du point de vue de leur comportement à la rupture, les matériaux sont traditionnellement regroupés en trois grandes classes :

  • (i) les matériaux ductiles qui, comme les métaux, se déforment de manière plastique avant leur rupture
  • (ii) les matériaux quasi-fragiles, tels que les roches ou les bétons, où la fracture débute par un endommagement sous forme de microfissures, dont la coalescence amène à la rupture brutale.
  • (iii) les matériaux fragiles, verres polymériques ou verres d'oxyde..., qui se déforment de manière parfaitement élastique avant la fracture, qui se produit par rupture successives des liaisons atomiques en pointe de fissure.

Les expériences réalisées à l'IRAMIS-SPCSI montrent qu'un même matériau peut, en fonction de la vitesse de fissuration, appartenir à deux de ces catégories : il est observé que le Plexiglas®, archétype des matériaux fragiles, s'endommage au delà d'une vitesse limite bien définie, par nucléation de microfissures, comme les matériaux quasi-fragiles.


 

Retour en haut