| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST | English
Univ. Paris-Saclay

Faits marquants scientifiques 2008

19 décembre 2008
H. le Sueur, P. Joyez, H. Pothier, C. Urbina, and D. Esteve

Les éditeurs de la revue "Physical Review Letters" ont récemment  attribué le label "Editor's suggestion" à un article du groupe  Quantronique du SPEC (Service de Physique de l'Etat Condensé): Phase Controlled Superconducting Proximity Effect Probed by Tunneling Spectroscopy, Phys. Rev. Lett. 100 (2008) 197002".  Par ce label les éditeurs souhaitent mettre en avant un petit nombre  d'articles qu'ils considèrent comme particulièrement clairs et  susceptibles d'intéresser des lecteurs en dehors de leur spécialité.

Cet article permet de donner pour la première fois une vue élégante, claire et complète de  "l'effet de proximité supraconducteur". Cet effet se produit aux  interfaces entre métaux supraconducteur (S) et métaux résistifs  "normaux" (N), où la supraconductivité peut "contaminer" localement  le métal normal et le rendre non résistif.

05 décembre 2008

Communiqué de presse commun CEA-CNRS

Les molécules qui constituent un fluide sont tellement petites et nombreuses qu’à notre échelle nous pouvons considérer les fluides comme des milieux continus. En est-il de même lorsque ces mêmes fluides circulent dans des canaux dont le diamètre n’excède pas quelques tailles moléculaires ? Des physiciens de Rennes (IPR), Saarbrücken, Saclay (Iramis/LLB) et Grenoble (ILL) ont ainsi montré que certains fluides constitués de molécules allongées, dites mésogènes, ne présentent plus les mêmes propriétés physiques si le diamètre du tube dans lequel on les place est de l’ordre de 10 nanomètres, soit trente fois le diamètre de ces molécules.

Pour effectuer ces expériences, les physiciens ont utilisé des canaux de plusieurs centaines de micromètres de longs, mais seulement 8 nm de diamètre, obtenus par attaque électrochimique de feuilles de silicium. Après oxydation de ces matériaux, ils ont obtenu des membranes de silice, parfaitement transparentes et percées d’une assemblée de nanocanaux. Par des mesures optiques, ils ont suivi les orientations préférentielles de molécules mésogènes, confinées par imprégnation dans les canaux. Ces molécules, impliquées dans la plupart des applications des cristaux liquides, s’alignent spontanément entre elles en dessous d’une température bien précise alors que leur orientation est quelconque au dessus de cette température. En outre, des mesures de diffusion des neutrons faites au LLB et à l'ILL, ont montré que dans un canal, les mouvements de rotation et de translation des molécules sont modifiés et dépendent de manière importante de l’endroit précis de l’échantillon où se place la molécule. Ces modifications devraient avoir un effet important sur la viscosité du fluide et ses propriétés de transport.

Les résultats de cette étude font l’objet de deux publications dans les revues Physical Review Letters et Physical Review E, Rapid Communication.

16 février 2008

A l’heure où nous nous interrogeons sur les réserves de combustibles fossiles de notre planète et sur les conséquences de l’effet de serre sur le réchauffement du globe, l’hydrogène est considéré comme le vecteur énergétique d’avenir pour les transports. Les recherches conduites par le CEA portent sur toutes les étapes de cette filière : production, stockage, transport, distribution et utilisation. Dans cette filière, l'hydrogène produit à partir d'énergie primaire, solaire, nucléaire, éolien, chimique... est embarqué dans le réservoir du véhicule et une pile à combustible, élément permettant la conversion propre (sans émission de CO2) de l'énergie chimique en énergie électrique, associée à un moteur électrique remplace alors le moteur à essence de nos voitures.

Parmi les différents types de piles adaptées aux applications de transport, les plus intéressantes sont de type PEMFC (Proton Exchange Membrane Fuel Cell). Ces piles contiennent en particulier une membrane polymère capable de jouer le rôle d’électrolyte solide. Dupont De Nemours commercialise une membrane à base de polymère perfluoré sulfoné, le Nafion®. Cette membrane présente cependant quelques inconvénients comme une autonomie médiocre (< 5000h de fonctionnement), une fragilité mécanique, l’incapacité à fonctionner en milieu anhydre… L’équipe des "Polymères Irradiés" du LSI essaie de répondre à ces problèmes en proposant un nouveau type de membrane.

20 octobre 2008
Fabien Quéré et le Groupe Physique à Haute Intensité (PHI) - IRAMIS – Service des Photons, Atomes et Molécules (SPAM)

Depuis l'invention du laser on cherche à obtenir des faisceaux de longueur d'onde de plus en plus courte, dans le domaine des rayons X. Une des manières de produire du rayonnement XUV est de focaliser un laser intense dans un milieu matériel. Celui-ci réagit à la très forte sollicitation extérieure de manière non-linéaire, ce qui se traduit par l’émission d’harmoniques d’ordres élevés de la fréquence fondamentale excitatrice.

On  utilise depuis une quinzaine d’années des systèmes atomiques ou moléculaires pour jouer ce rôle de convertisseur de fréquence. C’est la génération d’harmonique dans les gaz (voir le fait marquant du 13 mai 08 : "Des molécules pour contrôler les impulsions lumineuses à l'échelle attoseconde"). Ces harmoniques ont des propriétés temporelles et spatiales particulièrement intéressantes qui se traduisent dans le domaine temporel par la génération de trains d’impulsions attosecondes, et dans le domaine spatial par une excellente cohérence. En un sens, les propriétés de ce rayonnent XUV calquent celles du laser excitateur.

Depuis peu, une autre manière de générer ces fréquences élevées est en plein développement. Il s’agit d’utiliser la surface d’un solide, autrement appelé un "miroir plasma" (voir le fait marquant de septembre 2006 : "Les miroirs plasmas : de la physique des conditions extrêmes aux nouvelles sources de lumières") et d’y focaliser un laser de très haute intensité (>1017 W/cm2).

10 mars 2008
Contact : David Garzella

G. Lambert1,2,3, T. Hara2,4, D. Garzella1, T. Tanikawa2, M. Labat1,3, B. Carre1, H. Kitamura2,4, T. Shintake2,4, M. Bougeard1, S. Inoue4, Y. Tanaka2,4, P. Salieres1, H. Merdji1, O. Chubar3, O. Gobert1, K. Tahara2, M.-E. Couprie3

1Service des Photons, Atomes et Molécules, DSM/DRECAM, CEA-Saclay, 91191 Gif-sur-Yvette, France
2RIKEN SPring-8 Centre, Harima Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
3Groupe Magnétisme et Insertion, Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette, France
4XFEL Project Head Office/RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan

17 novembre 2008

Les chercheurs du LLB viennent de publier en 2008 plusieurs articles dans les prestigieuses revues Science [1-2] et Nature [3]. Ces résultats montrent toutes les potentialités des techniques de diffraction de neutrons à la pointe des études sur les nouveaux matériaux.

15 juillet 2008
D. Bonamy et L. Ponson (SPCSI), D. Santucci (Fysik Institutt Oslo)

La fracture est un phénomène de la vie courante : on le rencontre à toutes les échelles de la matière condensée, depuis l'échelle atomique (dans les nanostructures) jusqu'à l'échelle de notre planète marquée par les failles dans les plaques continentales. Mais peut-on trouver un  modèle unificateur pour décrire le phénomène ?

La dynamique de la propagation d'une fracture est complexe. Dans un matériau élastique idéal, parfaitement homogène, la situation reste relativement simple, aisément modélisable à l'aide de la Mécanique Linéaire Elastique de la Rupture : le front de fissure forme une ligne continue, qui se propage dans le matériau suivant une trajectoire prédictible et à vitesse régulière, d’autant plus élevée que la sollicitation en tension est importante. Dès que l'on prend en compte l'inhomogénéité inhérente à tout matériau (hétérogénéité de microstructure, défauts ponctuels, effet de la température…) la fissure ne progresse plus continument mais par sauts apparemment imprédictibles, ce qui impose un traitement statistique du problème.

 

Retour en haut