| | | | | | | webmail : intra-extra| Accès VPN| Accès IST| Contact | English
Univ. Paris-Saclay

Faits marquants 2019

23 avril 2019

Cette étude propose une méthode innovante de détection de protéines intracellulaires qui associe fluorescence et résonance magnétique, en combinant l’utilisation d’un fluorophore activable de très petite taille et l’exploitation de la grande sensibilité d’un traceur RMN non toxique, le xénon, dont le spin nucléaire est hyperpolarisé. Les biosondes ainsi constituées sont ainsi doublement activables, combinant un signal de fluorescence et un signal de RMN du xénon-129 spécifiques lorsque la cible est rencontrée.

06 septembre 2019

Une collaboration entre les équipes du LIDYL au CEA Saclay et de l'ATP du Lawrence Berkeley National Lab (LBNL) vient d'élucider les mécanismes d’absorption d’un faisceau laser ultra-intense, lors de sa réflexion sur un plasma dense formé à la surface d’une cible solide. Ces mécanismes, jusqu’alors non identifiés pour des intensités lasers > 1018 W.cm-2, interviennent dans de nombreux processus laser-plasma, tels que la production de faisceaux d’électrons et d’ions relativistes ou de faisceaux de lumière de courte longueur d'onde (émission d’harmoniques Doppler d’ordre élevé), aux multiples applications (spectroscopies, irradiations, médecine…). La compréhension fine de ces mécanismes, rendue possible grâce la combinaison de résultats expérimentaux et numériques de premier plan, permettra d’optimiser ces nouvelles sources de particules et de lumière.

26 février 2019

Les lasers à impulsions ultra-brèves sont au cœur de la recherche sur l'interaction rayonnement-matière avec de nombreuses applications dans des domaines très variés : femto-chimie, photovoltaïque… Certains de ces lasers nécessitent des développements complexes pour que les impulsions produites répondent par leurs caractéristiques (énergie délivrée, longueur d'onde, forme et stabilité de l'impulsion…) à des besoins spécifiques.

Pour le dispositif d'ATTOLAB, Equipex sur la dynamique ultra rapide coordonné par le LIDYL au CEA, plusieurs dispositifs expérimentaux de physique atomique et moléculaire et de physique du solide seront accessibles, pour lesquels il est nécessaire de produire des impulsions laser de forte énergie (qques 10 mJ) à haute cadence (1 ou 10 kHz) présentant un spectre de longueur d’onde et largeur spectrale et accordables, d'une durée inférieure à 20 femtosecondes (1 femtoseconde = 10-15 s), avec un contrôle extrêmement précis des caractéristiques à l’échelle du champ électrique.

Afin d'atteindre les objectifs des expériences, les chercheurs du laboratoire commun "Impulse", associant le LIDYL à la société Amplitude Technologies, ont réalisé une chaine amplificatrice laser avec une configuration des étages amplificateurs originale, qui permet d’obtenir les caractéristiques requises et au meilleur niveau mondial.

25 septembre 2019

La physique de la matière condensée repose sur quelques concepts fondateurs, comme le paradigme de Néel (avec sa description des ordres magnétiques classiques), la théorie des liquides de Fermi (avec le concept de quasi-particule), et la théorie de Landau des transitions de phases (mettant en exergue le concept de brisure spontanée de symétrie). Toutefois, de nouvelles découvertes bouleversent ces dogmes, mettant en lumière le rôle des fortes corrélations entre quasi-particules, la découverte de transitions de phase topologiques, ou l’observation de nouveaux états de la matière.

Ce sont par exemple les liquides ou glaces de spin, les états de boucle de courant dans certains oxydes, ou la description de nouvelles transitions de phase, sans symétrie brisée, mettant en jeu le confinement/déconfinement d’objets topologiques comme les vortex. Ceci suscite et motive toujours plus avant l’étude de la matière et des "matériaux quantiques", pour acquérir de nouvelles connaissances fondamentales et en tirer le meilleur parti pour des applications diverses. Ces nouveaux états de la matière se rencontrent dans des conditions ultimes et notamment aux très basses températures, dans la gamme du milliKelvin (mK).

Dans cette optique, et pour accompagner cette recherche, notre équipe du LLB responsable de l’opération du diffractomètre de neutrons G4-1 (LLB-Orphée) a fait l’acquisition d’un nouvel appareil permettant de réaliser des mesures de diffraction des neutrons jusqu’à des températures ultra-basses (40 mK).

 

 

21 avril 2019

Les membranes d’oxyde d’aluminium nanoporeuses sont des systèmes modèles permettant d’étudier le comportement de la matière sous confinement. Leurs utilisations pour des études de nano-moulage, de microfluidique ou en biologie sont ainsi nombreuses. Une équipe du laboratoire PHENIX (Université Pierre et Marie Curie) et du laboratoire Léon Brillouin (IRAMIS, CEA Saclay) ont étudié in-situ l’adsorption de polymères chargés dans ces matériaux modèles par une approche combinant la réflectivité de neutrons et la microscopie électronique.

26 novembre 2019
Le développement de techniques de diagnostic biologique précoce, à la fois rapides et sensibles, est un vrai défi dans des domaines aussi variés que la défense, l’environnement et la santé. Dans le cadre d’une collaboration avec le SPI/LERI, le laboratoire LNO du SPEC a développé une biopuce microfluidique à base de capteurs magnétiques ultra sensibles à magnétorésistance géante (capteurs GMR), capable de détecter individuellement et de façon efficace des cibles biologiques marquées magnétiquement.

 

11 juillet 2019
La métrologie (spectroscopie, mesures de temps ou de distances) ou encore la réalisation de réseaux optiques quantiques nécessitent des sources de photons uniques efficaces. Une équipe du SPEC à Saclay, en collaboration avec l'IQST d'Ulm en Allemagne, propose une voie originale pour obtenir une source de photons microondes uniques, simple, efficace et brillante. Cette nouvelle voie exploite un régime de fort couplage lumière-matière, rendu accessible grâce aux développements récents des circuits électriques quantiques.

 

17 janvier 2019

L'électron est une particule élémentaire portant la charge élémentaire "e", une constante fondamentale de la physique. Cependant, dans un conducteur confiné en 2 dimensions soumis à un champ magnétique intense (10 T), les électrons peuvent s’organiser en un nouvel état quantique topologiquement corrélé où le courant électrique peut être transporté par des charges fractionnaires : e/3, e/5… . Ni fermions (comme les électrons), ni bosons (comme les photons), ces particules élémentaires artificielles sont dénommées anyons, car on pense qu’elles obéissent à une "statistique quantique fractionnaire". Certaines variétés d’anyons pourraient être exploitées pour le "calcul quantique topologique", où l'information quantique est portée par des états bien définis (qubit), car topologiquement protégés.

Une équipe du SPEC CEA, en collaboration avec le Cavendish Laboratory de Cambridge (UK) pour l'élaboration du matériau, a montré que l’on pouvait observer et manipuler des anyons de charge fractionnaire e* = e/3 ou e/5, avec des photons microondes de fréquence f. Ceci est mis en évidence par l'observation, en présence d'une polarisation V et d'un champ microonde de fréquence f, d'un bruit photo-assisté excédentaire, mesuré au-delà d'une tension seuil VJ donnée par la relation de Josephson : e*VJ=hf. Ces résultats sont publiés dans la revue "Science".

La mesure de ce seuil apporte une nouvelle détermination originale de la charge fractionnaire des anyons. Elle donne aussi la preuve que les anyons peuvent absorber ou émettre des photons, ce qui ouvre une voie pour leur manipulation résolue en temps et tenter de mettre en évidence leur statistique fractionnaire.

 

Retour en haut