| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST | English
Univ. Paris-Saclay

Faits marquants scientifiques 2013

12 décembre 2013

Les méthodes de nanostructuration de surface sont à la source de nombreux progrès en nanotechnologies. Une collaboration rassemblant des équipes française, italienne et une société franco-américaine [1] ont mis en évidence l’ouverture de nanotunnels sous la surface d’un semi-conducteur, le carbure de silicium (SiC). Ce phénomène, induit par l'interaction d'atomes d'hydrogène/deutérium (H/D) à la surface du SiC est particulièrement intéressant, du fait des propriétés intrinsèques de ce semi-conducteur. Il est aussi remarquable qu'en fonction de l'exposition à l’H/D, les nanotunnels suivent une séquence de transitions semi-conducteur/métal/semi-conducteur. Ces résultats ont été obtenus par des expériences de pointe (étude par rayonnement synchrotron, techniques de spectroscopies vibrationnelles) conjointement  à des simulations théoriques. 

Ce type de nanostructure à la surface du SiC, ainsi mis en évidence, peut ouvrir la voie à de nombreuses applications en électronique, chimie, stockage, ou pour des capteurs et en biotechnologie.

28 octobre 2013

Les progrès en nano-électronique quantique permettent d'observer dans un conducteur les interférences entre électrons, comme le font des photons en optique, ou encore de mesurer leur bruit quantique (ou bruit Schottky, l’analogue pour des électrons du bruit de photon , lié à la nature discrète des particules).

Pour compléter cette optique quantique électronique, il manquait une source d’électrons à la demande, simple et fiable. La difficulté résidait dans le fait que, contrairement aux photons qui se meuvent dans le vide, un conducteur contient déjà des charges qui ne demandent qu’à s’agiter lors de l’injection d’un électron.

Suivant une proposition datant de presque vingt ans de L. Levitov, théoricien au MIT, les chercheurs du SPEC ont réussi à injecter un nombre entier d’électron dans le conducteur sans le perturber en appliquant des impulsions de tension de forme Lorentzienne. Celles-ci génèrent une excitation fondamentale présentant une parenté avec les solitons, qu’ils ont appelé "Léviton". Cette première, à paraître dans la revue Nature, ouvre des perspectives en physique quantique dépassant le champ de la nano-électronique : en effet, des Lévitons atomiques pourraient être pareillement réalisés avec des atomes froids (gaz de fermions).  

 

11 septembre 2013

L'augmentation de la sensibilité des capteurs magnétiques et leur intégration ont permis d'augmenter considérablement la densité de stockage de l'information. Poursuivre ce mouvement est une forte incitation à réaliser des études explorant le comportement magnétique des nanostructures et nano-objets. Parmi ces objets, les nanofils sont des objets fascinants qui, du fait de leur faible section, montrent des effets nouveaux : les chercheurs du LSI ont ainsi explorés les propriétés de transport de nanofils de nickel et observés des effets de magnétorésistance très originaux, liés à la taille des objets étudiés.

 

11 juin 2013


 

L’effet Josephson décrit le flot de supercourant à travers un lien faible entre deux supraconducteurs, comme une jonction tunnel, un nanofil ou une molécule. Il est à la base d’une grande quantité de dispositifs (magnétomètres - SQUIDs, convertisseurs fréquence-tension de très haute précision, détecteurs de photons large bande) avec des applications allant de la médecine, à l’information quantique ou encore l'astronomie.

Microscopiquement, le supercourant est porté par des états de paires de Cooper localisées au lien faible. Ces états, appelés états d’Andreev, viennent par doublets, et ont des énergies inférieures au gap supraconducteur. Les circuits Josephson existants sont basés sur les propriétés des états fondamentaux de chaque doublet et, jusqu’à maintenant, les états de paires excitées n’avaient jamais été directement détectés. Nos expériences établissent leur existence par des mesures spectroscopiques de contacts atomiques supraconducteurs [1].

 

Le spectre d’énergie d’un supraconducteur massif isolé présente un gap 2Δ autour de l’énergie de Fermi. Ce gap représente l’énergie minimale pour exciter une paire de Cooper. À un lien faible entre deux supraconducteurs, où la phase supraconductrice peut facilement être tordue, le spectre est localement modifié, avec notamment l’apparition de doublets d’états dans le gap. Ces états, appelés états d’Andreev, ont des énergies ±EA qui dépendent de la différence de phase δ entre les électrodes et de la probabilité de transmission des électrons (voir Figure 1). Comme l’énergie des états d’Andreev est inférieure au gap Δ, ils ne peuvent pas se propager dans les supraconducteurs massifs et restent ainsi localisés au lien faible. L’état d’énergie -EA correspond donc à une paire de Cooper localisée dans son état fondamental ; l’excitation de plus faible énergie est une excitation de cette paire de Cooper vers l’état d’énergie +EA.

18 mars 2013

Le stockage magnétique reste aujourd'hui le premier mode de stockage de masse de données. Une solution alternative, encore en cours de développement, peut être les mémoires à base de matériaux ferroélectriques, où la polarisation électrique locale permet le stockage de l'information. Ces types de mémoires présentent plusieurs avantages : non volatilité, faible consommation électrique, grande vitesse de lecture-écriture et fiabilité.

La réalisation de telles mémoires passe par la maitrise de l'élaboration de couches minces de matériaux, tels que BiFeO3, et de leur comportement ferroélectrique. Les partenaires d'une collaboration entre les laboratoires français, CEA-SPCSI, UMPhys CNRS/Thalès et de l'Université d'Evry, des Universités de l'Arkansas et de South Florida et du Department of Physics de l'Université de Shanghai, montrent, par une étude expérimentale et théorique, qu'il existe une épaisseur critique minimale pour stabiliser une phase ferroélectrique mono-domaine. Cette meilleure compréhension de la ferroélectricité en couche mince nanométrique est un élément important pour leur intégration dans les dispositifs à base de matériaux ferroélectriques.

 

09 janvier 2013

Afin de traiter correctement la dynamique de spin pour des nano-objets, le Groupe Modélisation et Théorie du SPEC, en collaboration étroite avec une équipe du CEA/DAM, Le Ripault, a mis au point un modèle générique décrivant à l’échelle atomique la dynamique spatiale des atomes couplée à leur aimantation de spin. Sur cette base, il est possible de rendre compte, à l'aide d'un code de dynamique moléculaire magnétique optimisé, de détails fins du magnétisme du cobalt massif et de l'évolution rapide du magnétisme d'îlots nanométriques.

 

11 novembre 2013

Les vésicules, simples compartiments dont la membrane isole deux milieux aqueux, sont proposées comme nano-réacteurs chimiques ou comme vecteurs pouvant transporter et délivrer à un emplacement ciblé des molécules d’intérêt, en imitation de fonctions biologiques (l'étude de l'échange entre cellules via des vésicules est l'objet du Prix Nobel de Physiologie-Médecine 2013). Constituée d'une simple membrane, une vésicule représente aussi un modèle grossier, mais le plus simple, d’une cellule biologique.

La présente étude a porté sur des vésicules encloses par une membrane composée de copolymères auto-assemblés (polymersomes), dont les propriétés de résistance mécaniques et de perméabilité sont très élevées. Ce travail de recherche, en collaboration entre une équipe du SIS2M et une de l'Université de Bordeaux-ENSBCP, publié dans ACS Nano, montre que des polymersomes faits de copolymères diblocs peuvent former des vésicules à double parois, sous l'effet des contraintes intenses subies lors d'un choc osmotique (comme celui qu'elle peuvent recevoir lors d'une injection dans un liquide riche en espèces chimiques comme le sang).

Ces effets ont été largement explorés, car la forme des vésicules est un paramètre essentiel de la bio-distribution et de l'internalisation cellulaire (endocytose), pour lesquelles les polymersomes sont d’excellents candidats à l’heure actuelle.

 

29 juillet 2013
Dans le cadre d’une collaboration entre l'IRAMIS/SIS2M et le DSV/iBiTec-S, une architecture moléculaire générique à base de cryptophane a été développée, donnant accès à des composés hydrosolubles et fonctionnalisables destinés à l’imagerie par résonance magnétique du 129Xe.

 

06 janvier 2013
Nouveaux systèmes : [U@Si20]6- et la série isoélectronique [An@Si20]n- (An=Np, Pu, Am, Cm)

En chimie, les "règles" du doublet, de l'octet et des 18 électrons permettent de concevoir des composés de grande stabilité chimique. Ces règles correspondent au principe de l'occupation complète des orbitales externes de chacun des atomes d'une molécule, soit respectivement s2, (s2, p6) et (s2, p6, d10). Chaque atome dispose ainsi, en partage avec ses voisins, d'une structure électronique externe en couches complètes, de type gaz rare : He, Ar, Ne, Xe et Kr.

De la même façon, nous avons montré que des composés avec des liaisons impliquant 32 électrons, avec l'apport des quatorze électrons supplémentaires apportés par des orbitales 5f complètes, pouvaient être très stables. En montrant par des calculs de chimie quantique, la très grande stabilité d'une nouvelle famille de composés impliquant des liaisons à 32 e- entre un atome métallique central (actinide) et une cage ligand (Si20), la simple règle initiale tend à devenir un nouveau principe.

Ce travail de recherche fondamentale est mené au Laboratoire de Chimie de Coordination des Éléments f à Saclay (IRAMIS/SIS2M/LCCEf) en collaboration avec le Prof. Pekka Pyykkö (Université d’Helsinki, Finlande) et le Dr. Carine Clavaguéra (CNRS, Ecole Polytechnique, Palaiseau).

 

14 octobre 2013

L'interaction d'une impulsion laser intense avec une surface solide fait violemment osciller le cortège électronique, entrainant l'émission de protons. C'est une méthode pour obtenir une source de protons de haute énergie pour de nombreuses applications (imagerie et proton thérapie par exemple).

Deux équipes de l’IRAMIS appartenant au SPAM (Physique à Haute Intensité) et au LSI (Interaction Laser-Solide) ont montré, pour la première fois, qu’à l'aide de surfaces structurées, il est possible de renforcer l’efficacité du couplage avec le faisceau laser, via l’excitation résonante d’ondes de surface en régime relativiste, et d'obtenir ainsi des protons de plus haute énergie. La démonstration expérimentale de ce mécanisme original ouvre une voie pour améliorer la production par laser de faisceaux de particules énergétiques.

30 avril 2013

Un matériau transparent laisse passer la lumière. Mais si la lumière devient trop intense (faisceau laser) le solide peut être localement détruit par claquage optique, phénomène qui résulte d'un violent échange d'énergie. Les détails du mécanisme sont complexes, mais méritent d'être étudiés, pour maitriser cet effet indésirable (optique laser), mais aussi aujourd'hui pour façonner les matériaux optiques (micro usinage du verre, composants SiO2 et gravures de fibres optiques) ou pour des applications médicales (chirurgie de la cornée). Une expérience pompe-sonde originale, réalisée par les chercheurs de l'IRAMIS, permet de détailler les mécanismes du processus selon la nature du matériau irradié.

29 août 2013

La demande actuelle toujours croissante d'échanges d'informations, sollicite une recherche accrue sur des systèmes de transmission novateurs, performants, robustes, bons marchés et durables. En réponse à cette incitation, les chercheurs de l'ISCR (Rennes) et du CIMAP (Caen) ont développé de nouvelles sources de lumière à base de matériau polymères (PMMA), où des clusters métalliques (Mo6) permettent de renforcer l'émissivité dans l'infrarouge, liée au dopage erbium initial du matériau. Ce matériau, d'élaboration facile, permet une intégration sur mesure, en fonction des applications visées : amplificateur et sources d’émission coplanaires et compactes, circuits fibres optiques.

02 juin 2013

L'utilisation de silicium à l'anode des accumulateurs Li-ion permet de fortement augmenter leur capacité. Cependant ce matériau se révèle fragile et les accumulateurs résistent mal aux cycles charge-décharge répétés. D'où l'idée d'utiliser du silicium sous forme de particules nanométriques, encapsulées dans une coquille de carbone. Le cœur de silicium offre une importante capacité spécifique (~ 10 fois celle du carbone actuellement utilisé), tandis que la coquille de carbone renforce la résistance mécanique des particules.

S'appuyant sur son savoir-faire dans la réalisation de nanoparticules par pyrolyse laser, le groupe Édifice Nanométrique (EDNA) du Laboratoire Francis Perrin (LFP) a développé un nouveau montage de pyrolyse laser à "double-étage" indépendants pour la réalisation des nanoparticules de type cœur-coquille Si@C.

Les premiers résultats obtenus, avec ces nanoparticules comme matériau actif dans une anode de pile, montrent une stabilité des cycles de charge/décharge sur plus de 500 cycles, pour une capacité de charge limitée à 1000 mAh/g. Ces résultats très encourageants, ont été obtenus dans le cadre d'une collaboration DSM/IRAMIS et le DRT/LITEN, et ont fait l’objet de deux dépôts de brevet.

 

19 août 2013

Une fracture sous l'effet d'une contrainte peut se propager de façon continue ou intermittente, et il est technologiquement très utile de pouvoir prédire dans quel régime se produira la propagation d'une éventuelle fissure. Par une approche statistique, une description globale des deux régimes a pu être obtenue, ainsi que le diagramme de phase précisant leurs conditions d'apparition. De plus, l'étude montre que les deux régimes sont de nature profondément différente : le régime intermittent présente des fluctuations à toutes les échelles de temps, ce qui rend la dynamique de fissuration imprévisible, quelle que soit l’horizon choisi.

 

12 décembre 2013

Les méthodes de nanostructuration de surface sont à la source de nombreux progrès en nanotechnologies. Une collaboration rassemblant des équipes française, italienne et une société franco-américaine [1] ont mis en évidence l’ouverture de nanotunnels sous la surface d’un semi-conducteur, le carbure de silicium (SiC). Ce phénomène, induit par l'interaction d'atomes d'hydrogène/deutérium (H/D) à la surface du SiC est particulièrement intéressant, du fait des propriétés intrinsèques de ce semi-conducteur. Il est aussi remarquable qu'en fonction de l'exposition à l’H/D, les nanotunnels suivent une séquence de transitions semi-conducteur/métal/semi-conducteur. Ces résultats ont été obtenus par des expériences de pointe (étude par rayonnement synchrotron, techniques de spectroscopies vibrationnelles) conjointement  à des simulations théoriques. 

Ce type de nanostructure à la surface du SiC, ainsi mis en évidence, peut ouvrir la voie à de nombreuses applications en électronique, chimie, stockage, ou pour des capteurs et en biotechnologie.

 

Retour en haut