| | | | | | | webmail : intra-extra| Accès VPN| Accès IST| Contact
Univ. Paris-Saclay

Faits marquants 2020

11 février 2020

Les progrès continus dans l'exploration du magnétisme permettent de proposer de nouveaux dispositifs pour le traitement, le transfert ou le stockage de l'information.

Les matériaux antiferromagnétiques et/ou multiferroïques présentent une structure en domaines magnétiques. La présente étude montre que la perte locale de symétrie au niveau de ces parois permet l'émergence d'embryons de skyrmions antiferromagnétiques, vortex local de spin chiral (avec un enroulement droite ou gauche des spins) de très petite taille.

L’étude montre ainsi toute la richesse des parois multiferroïques, pour un nouveau pas vers une spintronique topologique et antiferromagnétique, pouvant permettre de réaliser des dispositifs de traitement de l'information originaux et performants : la mémorisation de la valeur d'un bit sur un skyrmion permettrait le stockage magnétique de l'information avec une très haute densité.

 

13 mars 2020

Les matériaux composites, dont on peut faire judicieusement varier la composition, permettent de combiner les propriétés de ses constituants. Ainsi, l’ajout de matériaux inorganiques (ou charge) dans une matrice polymère permet d’améliorer les propriétés d’usage de ces matériaux, telles que leurs propriétés mécaniques, électriques ou optiques, et aussi d'alléger le matériau ou d'en diminuer le coût.

Dans l’industrie du pneumatique, et en particulier dans la formulation des bandes de roulement, on utilise ainsi des matrices élastomères que l'on renforce par des particules de silice. L'étude réalisée au LLB, en collaboration avec Michelin, montrent qu'il est possible de jouer sur les effets d'entropie de mélange et la balance des contributions entropique/enthalpique des interactions, pour piloter la dispersion des particules dans la matrice et contrôler les propriétés macroscopiques des matériaux.

 

07 janvier 2020

Formuler un substitut sanguin capable de transporter efficacement l’oxygène, sans toxicité biologique ou chimique, et dont la préparation serait peu coûteuse pour de très grandes quantités, est un graal qui remonte au XVIIème siècle [1]. De nombreuses solutions ont été avancées, notamment à base d’hémoglobines, protéines d’origine humaine, animale ou bactérienne qui transportent l’oxygène dans le sang. Aucune piste n’a permis jusqu’à présent de proposer un produit acceptable par les autorités de santé.

Une équipe d'IRAMIS, en collaboration avec deux équipes de l'institut Frédéric Joliot, et avec une jeune start-up : LBP propose une nouvelle voie : Il est montré que la molécule CB5(OH)10 est capable de complexer efficacement dans sa cavité le dioxygène d'une solution physiologique [2]. CB5(OH)10 appartient à la famille des cucurbiturils, en référence à leur forme qui ressemble à celle d'une citrouille. La propriété d'encapsulation du dioxygène par CB5(OH)10 est comparable, en son principe, à celle de l'hémoglobine, principal vecteur de transport du dioxygène dans le sang. La start-up ambitionne de proposer un substitut sanguin entièrement thermostable et synthétique, donc sans aucun risque infectieux.

17 mars 2020

Les faisceaux d'ions focalisés (FIB, 1 à 50 keV) sont largement utilisés pour façonner les semi-conducteurs pour la réalisation de dispositifs électroniques. Les faisceaux d'ions énergétiques apportent d'autres possibilités : l'irradiation par des ions de faible énergie pulvérise en surface, ils peuvent également être utilisé pour de l’implantation (dopage ou procédé de smart-cut). Les ions d'énergie intermédiaire (~ 50-500 keV) induisent des déplacements d'atomes en volume (pouvoir d'arrêt nucléaire) et à haute énergie (~ 30 MeV) on observe la formation par perte d'énergie électronique, de traces latentes, de désordre et d'éventuelles transitions de phase,

Dans la présente étude, les chercheurs du CIMAP, en collaboration avec DEN/DMN/SRMP et l'IJCLab d’Orsay ont étudié, sur l'installation JANNuS, les effets couplés sur le silicium d'une double irradiation à basse et haute énergie. Il est ainsi montré que le degré et la profondeur d'amorphisation dépendent fortement du rapport d'intensité des 2 types de faisceau d'ions : l'énergie déposée sous forme d'excitation électronique permet de réduire fortement les dommages dus aux collisions balistiques, à condition que le flux du faisceau d'ions à haute vitesse soit suffisamment élevé par rapport à celui des ions de basse vitesse. Le procédé permet ainsi de moduler la cristallinité du silicium sur des épaisseurs contrôlées.

 

Retour en haut