Thèse
Mise en oeuvre d’une électronique d’acquisition et de traitement continu programmable à des températures cryogéniques
Instrumentation
Physique mésoscopique
Le sujet de thèse que nous proposons a pour objet de démontrer qu’il est possible d’intégrer à des températures
cryogéniques l’intégralité de la chaîne d’instrumentation permettant de lire et de piloter les composants quantiques, comme
des qubits. En d’autres termes, nous cherchons à placer in-situ, dans le cryostat et au plus près des composants quantiques
(qubits) l’intégralité des systèmes, qui sont aujourd’hui placés à l’extérieur. De plus, afin de réaliser une avancée majeure,
nous visons une chaîne hyperfréquence (> 2 GHz) entièrement programmable. Ce dernier faut l’objet d’une thèse en cours
financée par l’Agence Innovation Défense (AID) et le Commissariat à l’Énergie Atomique (CEA) et d’un dépôt de projet de
type RAPID.
Dans le cadre de ce sujet de thèse, nous commencerons à quelques centaines de MHz. Plusieurs problèmes
principaux sont identifiés et sont à résoudre, parmi lesquels nous citerons :
— conception et intégration de chiplets en System-in-Packages (SiPs) compatibles avec les températures cryogéniques ;
— interfaçage et intégration dans le cryostat des composants Analog to Digital Converter (ADC), Digital to Analog
Converter (DAC) et processeurs de traitement ;
— gérer le débit de données élevés (plusieurs dizaines de Gbit/s par qubit) ;
— latence roundtrip maximum de 200 ns ;
— gestion de l’énergie (quelques dizaines de mW de budget par qubit) ;
— choix des étages cryogéniques adaptés au différents étages de traitements ;
— choix de technologies indépendantes de la nature des objets quantiques manipulés.
cryogéniques l’intégralité de la chaîne d’instrumentation permettant de lire et de piloter les composants quantiques, comme
des qubits. En d’autres termes, nous cherchons à placer in-situ, dans le cryostat et au plus près des composants quantiques
(qubits) l’intégralité des systèmes, qui sont aujourd’hui placés à l’extérieur. De plus, afin de réaliser une avancée majeure,
nous visons une chaîne hyperfréquence (> 2 GHz) entièrement programmable. Ce dernier faut l’objet d’une thèse en cours
financée par l’Agence Innovation Défense (AID) et le Commissariat à l’Énergie Atomique (CEA) et d’un dépôt de projet de
type RAPID.
Dans le cadre de ce sujet de thèse, nous commencerons à quelques centaines de MHz. Plusieurs problèmes
principaux sont identifiés et sont à résoudre, parmi lesquels nous citerons :
— conception et intégration de chiplets en System-in-Packages (SiPs) compatibles avec les températures cryogéniques ;
— interfaçage et intégration dans le cryostat des composants Analog to Digital Converter (ADC), Digital to Analog
Converter (DAC) et processeurs de traitement ;
— gérer le débit de données élevés (plusieurs dizaines de Gbit/s par qubit) ;
— latence roundtrip maximum de 200 ns ;
— gestion de l’énergie (quelques dizaines de mW de budget par qubit) ;
— choix des étages cryogéniques adaptés au différents étages de traitements ;
— choix de technologies indépendantes de la nature des objets quantiques manipulés.
SL-DRF-25-0613
M2
1 janvier 2025
Paris-Saclay
Physique et Ingénierie: électrons, photons et sciences du vivant (EOBE)
Saclay
CEA
Direction de la Recherche Fondamentale
Institut rayonnement et matière de Saclay
Service de Physique de l’Etat Condensé
Plateforme de Support à la Recherche