Thèse

Corrosion sous contrainte du verre : régions de vitesses élevées de propagation de fissure sous critique

Physique du solide, surfaces et interfaces
Les verres d’oxydes sont utilisés dans un grande variété d’applications industrielles en raison de leurs multiples propriétés avantageuses : transparence optique, bonnes propriétés mécaniques et thermiques, durabilité chimique, biocompatibilité et bioactivité. Cependant, un inconvénient majeur de ces verres est leur fragilité. La fracture dynamique du verre (vitesse de propagation de fissure ~km/s, comme dans le cas d’un verre tombant par terre et se brisant) en est un exemple bien connu. Il existe également un autre mode de fracture prépondérant et plus lent (10e-11 à 10e2 m/s). La vitesse de propagation de ces fissures sous-critiques est pilotée par la contrainte locale ressentie en pointe de fissure, appelée facteur d’intensité de contraintes et dépend des conditions environnementales, incluant l’humidité de l’air et la température.

Actuellement, notre dispositif expérimental permet de suivre la position du front de fissure au cours du temps grâce à un microscope tubulaire doté d’une caméra. Le traitement des images acquises permet de déterminer la vitesse du front de fissure et révèle la limite environnementale et la région I. Cependant, capturer les régions II et III n’est pas possible avec le dispositif actuel. Plusieurs raisons concourent à cette limitation : la vitesse élevée du front de fissure (10e-4 to 1500 m/s), la taille de l’échantillon (5×5×25 mm^3), la vitesse d’acquisition des caméras, etc.

Notre équipe a utilisé la technique de la chute de potentiel pour évaluer la vitesse du front de fissure lorsque v > 10e-4 m/s dans le PMMA. Cette méthode consiste à déposer une série de bandes conductrices parallèles à la surface d’un échantillon et d’utiliser un oscilloscope (haute fréquence) pour identifier quand le front de fissure sectionne les bandes conductrices ce qui conduit à un saut dans la résistance électrique. Nous souhaitons maintenant adapter cette technique aux échantillons DCDC de verres d’oxyde. L’objectif de la thèse est de développer et d’appliquer cette technique de chute de potentiel aux échantillons DCDC. Le défi est d’accéder aux variations fines de la vitesse de fissuration avec des résolutions en espaces et en temps de l’ordre de 50 microns et de la nanoseconde. L’étudiant en thèse participera à toutes les étapes de la réalisation des expériences : conception et dépôt des bandes conductrices parallèles sur la surface de l’échantillon en verre en utilisant une salle blanche, réalisation d’expériences de corrosion sous contraintes (CSC) dans les Régions II et III, et analyse des données acquises pendant l’expérience de CSC.
SL-DRF-25-0312
1 octobre 2025
Autre
Physique en Île-de-France (EDPIF)
Saclay
CEA
Direction de la Recherche Fondamentale
Institut rayonnement et matière de Saclay
Service de Physique de l’Etat Condensé
Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes
CEA
Email :
CEA
Email :