Laboratoire Léon Brillouin

UMR12 CEA-CNRS, Bât. 563 CEA Saclay

91191 Gif sur Yvette Cedex, France


Let's scatter neutrons

Dec 01, 2023
Anne-Charlotte Le Gulluche, Guylaine Ducouret, Ludovic Olanier, Annie Brûlet, Olivier Sanseau, Paul Sotta, and Alba Marcellan Model hybrid hydrogels reinforced by silica nanoparticles were designed by polymerizing and cross-linking the gels in situ. The polymer–particle interactions were tuned by using either poly(dimethylacrylamide) (PDMA), which adsorbs on silica, or poly(acrylamide) (PAAm), which does not.
Mar 14, 2023
Michal Swierczewski,  Fabrice Cousin,  Ewa Banach,  Arnulf Rosspeintner,  Latevi Max Lawson Daku,  Abolfazl Ziarati,  Rania Kazan,  Gunnar Jeschke,  Raymond Azoulay,  Lay-Theng Lee,  Thomas Bürgi A bidentate chiral dithiol (diBINAS) is utilised to bridge Au25 nanoclusters to form oligomers. Separation by size allows the isolation of fractions that are stable thanks to the bidentate nature of the linker.
Nov 07, 2022
Michal Swierczewski, Alexis Chenneviere, Lay-Theng Lee, Plinio Maroni, Thomas Bürgi Langmuir-Blodgett (LB) technique allows the deposition of gold nanoclusters (atomically precise nanoparticles below 2 nm in diameter) onto solid substrates with an unprecedented degree of control and high transfer ratios. Nanoclusters are expected to follow the crinkle folding mechanism, which promotes the formation of trilayers but kinetically disfavors the formation of the fourth layer.
Feb 22, 2022
J.C.Riedl, M.Sarkar, T.Fiuza, F.Cousin, J.Depeyrot, E.Dubois,G.Mériguet,R.Perzynski and V.Peyre Some of the most promising fields of application of ionic liquid-based colloids imply elevated temperatures. Their careful design and analysis is therefore essential. We assume that tuning the structure of the nanoparticle-ionic liquid interface through its composition can ensure colloidal stability for a wide temperature range, from room temperature up to 200 °C.
Nov 02, 2021
Michal Swierczewski, Plinio Maroni, Alexis Chenneviere, Mohammad M. Dadras, Lay-Theng Lee, Thomas Bürgi Nanoscale particles attract much attention due to their size-dependent optical, electrical and chemical properties. Of particular interest are ultrasmall metal nanoclusters which experience strong quantum confinement effect leading to profound changes in the atomic packing structure.


Retour en haut