Réalisation et étude de nano-circuits fonctionnels réalisés par nanolithographie aux interfaces multiferroïques laminaires

Le 18 septembre 2024
Types d’événements
Thèses ou HDR
Haowen LIN
Amphi. Bloch, Bât. 774, Orme des Merisiers
Le 18/09/2024
de 14h00 à 17h00

Résumé :

L’électronique à base d’oxydes a attiré une attention significative en raison de sa riche variété de mécanismes applicables, tels que la commutation résistive et le gaz électronique bidimensionnel. Par ailleurs, les hétérostructures d’oxydes multiferroïques artificielles, combinant plusieurs propriétés ferroïques fonctionnelles, offrent plusieurs degrés de liberté et fonctionnalités pour les circuits. En intégrant ces deux stratégies, cette étude se consacre à l’élaboration et les caractérisations de circuits reconfigurables innovants basés sur des hétérostructures épitaxiées de FeOx (ou NiFe2O4)/BaTiO3.

Une étude approfondie préalable des propriétés ferroïques du système NiFe2O4/BaTiO3 a non seulement permis d’établir une solide base pour la conception de circuits, mais a aussi révélé des propriétés magnétiques amoindries à l’interface, problème pour lequel un remède est proposé. Des études ultérieures de Microscopie Électronique de Photoémission par rayons X (XPEEM) indiquent que la polarisation par champ électrique peut induire une réduction chimique locale, augmentant potentiellement la conductance locale, ce qui est une condition préalable fondamentale pour la création de circuits reconfigurables. Par itération de tests électriques, d’analyses et d’améliorations, nous avons réalisé des dispositifs écrits par la microscopie à force piézoélectrique (PFM) dans des hétérostructures épitaxiées de FeOx (ou NiFe2O4)/BaTiO3, où deux électrodes définies par lithographie sont connectées par un canal de conduction écrit avec une pointe de PFM polarisée. Ces dispositifs montrent un rapport de changement de résistance remarquable allant jusqu’à 9444% dans le système FeOx/BaTiO3. La modularité de la résistance avec la taille du dispositif indique un effet de commutation uniforme, essentiel pour les applications industrielles.

Des mesures in situ et operando ont été développées et effectuées sur plusieurs lignes de lumière synchrotron pour examiner les modifications chimiques et structurelles locales lors de l’injection de courant. Curieusement, deux modèles de claquages distincts, dans le plan et hors du plan, ont été identifiés. La claquage dans le plan est généralement caractérisée par la fusion des électrodes, l’agrégation de Ti et de Fe (observée par XPEEM et μ-cartographie par fluorescence des rayons X), et la dégradation de la cristallinité des multicouches sous l’électrode et le canal de conduction (révélée par μ-diffraction des rayons X). À l’inverse, le claquage hors du plan a montré plusieurs baisses de résistance significatives avec l’augmentation du courant injecté, sans variations structurelles ou chimiques apparentes dans le plan. Des investigations complémentaires ex situ par METHR (microscopie électronique en transmission à haute résolution) de la coupe transversale de dispositifs post mortem suggèrent que l’origine de la panne hors du plan est la formation de vias (chemins de conduction) à phase amorphe à travers la couche BaTiO3 épitaxiée originale. Ces phénomènes offrent des perspectives uniques sur les effets de l’injection de courant et des pannes dans l’électronique à oxydes, ouvrant la voie à une optimisation ciblée pour renforcer la robustesse et la fiabilité des dispositifs à base d’oxydes.

Mots-clés :


Realization and study of functional nano-circuits created by nanolithography on artificial multi-ferroic oxide heterostructures

Abstract:

Oxide electronics have attracted significant attention due to their rich variety of applicable mechanisms, such as resistive-switching and 2D electron gas. Conversely, artificial multiferroic oxide heterostructures, combing multiple functional ferroic properties, offer several degrees of freedom and functionalities for circuits. By integrating these two strategies, this study focuses on pioneering novel reconfigurable circuits based on epitaxial FeOx (ou NiFe2O4)/BaTiO3 heterostructures.

An initial thorough investigation into the ferroic properties of the NiFe2O4/BaTiO3 system not only established a solid foundation for later circuits designs, but also unveiled the diminished magnetic properties at the interface, for which issue a cure is proposed. Subsequent X-ray Photoemission Electron Microscopy (XPEEM) studies indicate that electric field poling can induce local chemical reduction, potentially increasing local conductance, which is a fundamental prerequisite for designing reconfigurable circuits. Through iterations of electrical testing, analysis, and improvement, we realized devices written by piezoresponse force microscopy (PFM) in epitaxial FeOx (ou NiFe2O4)/BaTiO3 heterostructures, where two electrodes defined by lithography are connected by a biased-PFM-tip-written conduction channel. The devices demonstrate a remarkable resistance change ratio of up to 9444% in the FeOx/BaTiO3 system. The scalability of resistance with device size indicates a homogeneous switching effect, pivotal for industrial applications.

In situ and operando measurements have been developed and performed at multiple synchrotron beamlines to investigate the local chemical and structural changes with current injection. Intriguingly, two distinct breakdown patterns, in-plane and out-of-plane, were identified. The in-plane breakdown is typically characterized by the melting of electrodes, aggregation of Ti and Fe (observed by XPEEM and μ-X-ray fluorescence mapping), and degradation of crystallinity of the multilayers both beneath the electrode and the conduction channel (revealed by μ-X-ray diffraction). Conversely, the out-of-plane breakdown pattern exhibited multiple significant resistance drops with increasing injected current, without apparent in-plane structural or chemical variations. Complementary ex situ HRTEM (High resolution transmission electron microscopy) investigations of the cross-section of post mortem device suggest that the origin of out-of-plane breakdown is the formation of amorphous-phase vias (conduction paths) through the original epitaxial BaTiO3 layer. These phenomena offer unique insights into current injection and breakdown effects in oxide electronics, paving the way for targeted optimization to enhance the robustness and reliability of oxide-based devices.

Keywords: