Physico-Chimie et Chimie-Physique
Physico-Chimie  et Chimie-Physique

Déclenchement par laser de la réaction d'’insertion de calcium dans la molécule de CH3F sur un agrégat de gaz rare (Illustration IRAMIS/LIDYL-LFP).

Une réaction chimique dépend non seulement des atomes et des molécules mises en jeu mais aussi de leur environnement à courte distance. Comprendre le déroulement d'une réaction chimique demande ainsi une approche fondamentale prenant en compte à la fois ses aspects temporels et spatiaux. L’IRAMIS met donc en œuvre tout un ensemble de spectroscopies résolues en temps de la femtoseconde à la milliseconde avec des lasers pour étudier la dynamique de systèmes moléculaires, allant de biomolécules telles que l’ADN à des molécules chromophores pour le photovoltaïque.

Différentes problématique sont étudiées. En particulier des études conformatio-sélectives sont abordés par une double approche expérience – théorie avec des simulations de chimie quantique. Des systèmes plus complexes hors équilibre, isolés en phase gazeuse ou liés à des agrégats, sont étudiés dans le but d’identifier et de modéliser les forces qui pilotent leur dynamique réactionnelle.

 
#811 - Màj : 14/06/2016
Faits marquants scientifiques

Dans un système hôte-invité, un petit ensemble ‑ l'invité ‑ interagit avec un grand ensemble ‑ l'hôte ‑ qui joue souvent un rôle de thermostat. Suite à l'excitation de l'invité, la relaxation de l'énergie suit diverses voies à déterminer et c'est une question importante qui se rencontre en photophysique, photochimie, photobiologie ou encore en physique de la matière condensée. Les processus associés sont responsables de phénomènes aussi importants et divers que les photo-dommages en biologie, la conversion de l'énergie lumineuse (photosynthèse et cellules photovoltaïques) ou la dégradation de l'information quantique (décohérence) du fait du couplage avec l'environnement.

Le système hôte possédant un très grand nombre de degrés de liberté électroniques et géométriques, aucune approche théorique ne permet de saisir toute la complexité du phénomène de relaxation et de nouvelles méthodes génériques doivent être établies. En physico-chimie l'équipe Dynamique Réactionnelle du LIDyL en collaboration avec le LCPQ de l'IRSAMC, a étudié expérimentalement et modélisé le système hôte-invité bien défini constitué d'un agrégat libre inerte hébergeant un atome ou une molécule. Un tel système présente le grand intérêt de pouvoir être étudié sur toutes les gammes de complexité géométrique et électronique selon que l'on joue avec la taille de l'agrégat hôte ou l'excitation électronique de l'atome hébergé, permettant ainsi de valider l'effort de modélisation.

 

Un des objectifs de la physico-chimie est de suivre de façon fine et détaillée les chemins réactionnels des différents composants au cours d'une réaction chimique. Pour ceci de nombreuses techniques ont été mises en point : études en cellules, en jets effusifs ou supersoniques, spectroscopie laser, spectrométrie de masse…

Une technique originale "Cluster Isolated Chemical Reaction" (CICR) a été développée par le groupe de Dynamique Réactionnelle du LIDyL/LFP à des fins d'études de spectroscopie et de dynamique réactionnelle [1]. Elle consiste à observer ces réactions sur un nanoréacteur, constitué d'un simple agrégat de van der Waals. Elle a été récemment appliquée avec succès au cas d'une simple goutte d'hélium refroidie, qui constitue un milieu assez fascinant, car réunissant très basse température (0.37 K), superfluidité et taille finie. Cette taille finie permet de piéger et d'isoler un nombre contrôlé de molécules et de stabiliser des complexes intermédiaires de très faible stabilité. L'étude de telles molécules apporte des informations d'une très grande précision sur les surfaces de potentiel intramoléculaire, permettant d'améliorer la fiabilité des modèles associés.

 

Retour en haut