Caractérisation de matériaux pour l'énergie / Characterization of materials for energy
logo_tutelle logo_tutelle 
Caractérisation de matériaux pour l'énergie / Characterization of materials for energy

Cartographies de la concentration en hydrogène dans un échantillon de gaine de combustible nucléaire Zy4.

Les différentes filières énergétiques, telles que l'énergie nucléaire ou encore les nouvelles technologies autour de l'hydrogène, vecteur énergétique, ou le photovoltaïque, demandent des matériaux adaptés, dont il faut tester la durabilité et la fiabilité. L'étude de ces nouveaux matériaux demande de connaitre la composition chimique et la distribution des éléments associés au sein des échantillons.

Très peu de techniques permettent cependant la mesure des concentrations absolue en éléments légers dans les matériaux. La microsonde nucléaire est un instrument qui permet ce type de caractérisation, support indispensable d'une recherche sur les matériaux, utilisée et proposée à la communauté par le NIMBE/LEEL.


The different energy systems, such as nuclear energy or new technologies around hydrogen energy carrier, or photovoltaics, require suitable materials, which durability and reliability must be tested. The study of these new materials requires a precise analysis of their chemical composition and distribution of elements.

However, very few techniques allow measurement of absolute concentrations of light elements in materials. The nuclear microprobe is one of them, a central analytical technique used and proposed to the community by the NIMBE/LEEL team.

 
#1882 - Màj : 03/11/2016

Domaines Techniques
La microscopie électrochimique (SECM, pour Scanning ElectroChemical Microscopy) est une technique électrochimique qui s’est développée à partir de la fin des années 90. Elle consiste à approcher une électrode de taille micrométrique d’une surface qu’on cherche à étudier.
Advanced Electrochemical Microscopy (SECM)
Electrochimie
L'électrochimie est utilisée dans une large diversité de situations, que ce soit pour analyser des processus (corrosion, mécanismes de réactions en solution, etc... ) ou pour caractériser des matériaux -entre autre pour l'énergie.
A l’IRAMIS,  l’électrochimie est utilisée dans une large diversité de situations, que ce soit pour analyser des processus  (corrosion, mécanismes de réactions en solution, etc... ) ou pour caractériser des matériaux. Dans ce dernier volet, l’iramis a de nombreuses activités en électrocatalyse, dans les batteries, ou en biodétection.
Faits marquants scientifiques

Face au défi mondial de la transition énergétique et de l’indépendance énergétique, d'intenses recherches académiques et industrielles sont poursuivies sur différents dispositifs de stockage d'énergie, dont les batteries et les super-condensateurs, pour atteindre une production d'électricité décarbonée.

Dans la conception d'une batterie, le choix de la nature des électrodes et de l'électrolyte est déterminant. Une collaboration de chercheurs de l'UMR Nimbe, du CEA-Liten et de l'IMN de Nantes proposent une méthode de criblage rapide par radiolyse d'un électrolyte, selon les différents additifs ajoutés. Il est montré que le suivi sur quelques heures de la quantité de H2 émise est un bon marqueur de la dégradation de l'électrolyte, et donc de la performance à long terme de la batterie.

Depuis fin 2018, l'Alliance NTU Singapour - CEA pour la recherche en économie circulaire (SCARCE), premier laboratoire commun du CEA localisé à l’étranger, focalise ses efforts sur le recyclage des déchets électroniques. De façon très transversale, le DRF/NIMBE avec ses partenaires de la Direction des Energies (CEA-DES) ou de la Direction de la Recherche Technologique (CEA-DRT) et la NTU s’intéressent notamment à la levée de points bloquants. Ces efforts communs ont récemment conduit à plusieurs publications dans le domaine du tri des déchets [1,2], du développement rapide de procédés d’extraction [3] et de la réutilisation des matériaux produits [4].

 

L'électrification automobile et le stockage des énergies renouvelables sont aujourd'hui dominés par la technologie des batteries Li-ion, qui dépend de ressources comme le lithium, le graphite, le cuivre et certains métaux de transition disponibles en quantités limitées et/ou géographiquement inégalement répartis. Des nouvelles technologies de batterie basées sur d’autres ions alcalins ou alcalino-terreux avec des ressources quasi illimitées peuvent au long terme partiellement remplacer les batteries Li-ion pour certaines applications. Les batteries magnésium-ion sont l'une de ces technologies alternatives, en raison de la forte abondance du magnésium et des fortes capacités volumétrique et gravimétrique qui peuvent être atteintes.

Dans la lignée de premiers travaux sur le composé InSb, une équipe de l’IRAMIS a développé un nouveau matériau d’électrode négative pour les batteries Mg-ion basé sur le composé In-Pb. La combinaison synergique des éléments électro-actifs In et Pb influence les mécanismes de réaction et la structure (amorphe/cristallin) des produits formés lors de la réaction avec le Mg. Ceci favorise une capacité élevée, mais est par la suite préjudiciable à la réversibilité du matériau. Ces résultats illustrent l'influence des processus d'amorphisation et de cristallisation des électrodes sur les performances électrochimiques des batteries.

Comprendre comment les électrons émis lors de la décharge d’une batterie interagissent avec l’électrolyte est indispensable pour mieux appréhender les causes de leur vieillissement. Les chercheurs du Laboratoire de chimie-physique (CNRS/Université Paris-Sud) et du laboratoire Nanosciences et innovation pour les matériaux la biomédecine et l'énergie (CNRS/CEA) ont utilisé la radiolyse impulsionnelle picoseconde pour étudier la formation des électrons solvatés et leur interaction avec les carbonates de l’électrolyte. Ils ont mis en évidence un comportement particulier dans le cas du carbonate de propylène cyclique par rapport aux espèces non cycliques (linéaires). Ces travaux font l’objet d’une publication dans le Journal of Physical Chemistry Letters.

 

Comprendre l’interaction de l’eau avec la matière est une question scientifique qui intéresse des domaines aussi divers que les sciences de la terre, la médecine, la préservation du patrimoine, mais aussi l’industrie. Dans le cadre des études sur le stockage des déchets nucléaires vitrifiés en couches géologiques profondes, il est connu depuis une vingtaine d’année que l’interaction de l’eau avec le verre de confinement conduit à la formation d'un gel de corrosion en surface et d’une couche d'interface de très faible épaisseur enrichie en silice. Cette couche est dite passivante, car elle diminue de plusieurs ordre de grandeur la vitesse de dissolution des espèces solubles. Elle pourrait alors devenir une couche protectrice du colis pour des durées géologiques.

L’élucidation des mécanismes à l’échelle atomique qui expliquent cette passivation reste aujourd’hui une question scientifique ouverte. Après une préparation spécifique marquée isotopiquement, des équipes de la DEN et de la DSM ont pu obtenir une couche passivante particulièrement épaisse (> 1µm). Il a alors pu être montré qu’elle ne résultait pas d’une reprécipitation de la silice en solution et qu'elle conduit à la formation de pores sub-nanométrique qui confinent et piègent l’eau, ceci limitant considérablement son pouvoir d’hydrolyse. Favoriser la formation et la stabilité de telles couches offre donc de nouvelles perspectives pour augmenter la durabilité des verres de stockage.

 

 

Retour en haut