Thèse
Caractérisation in situ et en temps réel de nanomatériaux par spectroscopie de plasma
Matière ultra-divisée, physico-chimie des matériaux
Optique – Optique laser – Optique appliquée
L’objectif de cette thèse est de développer un dispositif expérimental permettant de réaliser l’analyse
élémentaire in situ et en temps réel de nanoparticules lors de leur synthèse (par pyrolyse laser ou pyrolyse
par flamme). La spectrométrie d’émission optique de plasma induit par laser (Laser-Induced Breakdown
Spectroscopy: LIBS) sera utilisée pour identifier les différents éléments présents et de déterminer leur
stoechiométrie.
Les expériences préliminaires menées au LEDNA ont montré la faisabilité d’un tel projet et en particulier
l’acquisition d’un spectre LIBS d’une nanoparticule unique. Néanmoins le dispositif expérimental doit être
développé et amélioré afin d’obtenir un meilleur rapport signal sur bruit, de diminuer la limite de détection, de
tenir compte des différents effets sur le spectre (effet de taille des nanoparticules, de composition ou de
structure complexe), d’identifier et de quantifier automatiquement les éléments présents.
En parallèle, d’autres informations pourront être recherchées (via d’autres techniques optiques) comme la
densité de nanoparticules, la distribution de taille ou de forme.
élémentaire in situ et en temps réel de nanoparticules lors de leur synthèse (par pyrolyse laser ou pyrolyse
par flamme). La spectrométrie d’émission optique de plasma induit par laser (Laser-Induced Breakdown
Spectroscopy: LIBS) sera utilisée pour identifier les différents éléments présents et de déterminer leur
stoechiométrie.
Les expériences préliminaires menées au LEDNA ont montré la faisabilité d’un tel projet et en particulier
l’acquisition d’un spectre LIBS d’une nanoparticule unique. Néanmoins le dispositif expérimental doit être
développé et amélioré afin d’obtenir un meilleur rapport signal sur bruit, de diminuer la limite de détection, de
tenir compte des différents effets sur le spectre (effet de taille des nanoparticules, de composition ou de
structure complexe), d’identifier et de quantifier automatiquement les éléments présents.
En parallèle, d’autres informations pourront être recherchées (via d’autres techniques optiques) comme la
densité de nanoparticules, la distribution de taille ou de forme.
SL-DRF-26-0543
Physico-chimie
1 octobre 2026
Paris Sud
Sciences Chimiques: Molécules, Matériaux, Instrumentation et Biosystèmes (2MIB)
Saclay
CEA
Direction de la Recherche Fondamentale
Institut rayonnement et matière de Saclay
Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie
Laboratoire d’étude des éléments légers

