Henri VINCENTI (français)

Fonction / Present position

The objectives of the research team are:

  • develop a new generation of lasers delivering extreme light intensities, to push the frontiers of fundamental physics
  • develop novel exascale simulation tools capable of simulating with high-fidelity the interaction of these lasers with matter.

Sujets de recherche / Research topics

  • Laser-matter interaction at extreme intensities
  • Strong-field Quantum Electrodynamics
  • Laser-plasma accelerators and applications to FLASH radiotherapy
  • Exascale computing
  • Kinetic plasma modelling
  • Machine learning applied to physics

Postes / Positions

  • 2017- present :Physicist, Fundamental Research Division, Commissariat à l’Energie Atomique, France
  • 2014-2017 : Marie Curie Fellow, Lawrence Berkeley National Laboratory, CA, USA
  • 2013-2014 : Postdoctoral fellow, Laboratoire d’Optique Appliquée, CNRS, Palaiseau, France
  • 2013 : Guest scientist, Max Planck Institute for the Physics of Complex Systems, Dresden, Germany

Education

2021

Habilitation (‘Habilitation à Diriger des Recherches’), Université Paris-Saclay, France

2013 

PhD in theoretical/computational physics, Ecole Polytechnique, Palaiseau, France

2009

MSc Nuclear Fusion, Ecole Polytechnique, Palaiseau, France (ranked 1st)

2009

MSc Electrical Engineering (‘Diplôme d’Ingénieur’), Centrale-Supelec, Gif-Sur-Yvette, France (ranked 3rd/469)

Principales publications scientifiques / Major scientific publications

Selection of recent publications – Complete list on Google Scholar
ORCID: 0000-0002-9839-2692

  1. Quantum vacuum processes in the extremely intense light of relativistic plasma mirrors
    A. Sainte-Marie, L. Fedeli, N. Zaim, F. Karbstein and H. Vincenti, New Journal of Physics (2022)
  2. PICSAR-QED: a Monte-Carlo module to simulate strong-field quantum electrodynamics in particle-in-cell codes for exascale architectures
    L. Fedeli, N. Zaïm, A. Sainte-Marie, M. Thévenet, A. Huebl, A. Myers, J.-L. Vay and H. Vincenti, New Journal of Physics (2022)
  3. Porting WarpX to GPU-accelerated platforms
    A. Myers et al, Parallel Computing, 108, 102833 (2021)
  4. Modeling of a chain of three plasma accelerator stages with the WarpX electromagnetic PIC code on GPUs
    J.-L. Vay et al, Phys. Plasmas, 28, 2 (2021)
  5. Spatio-temporal characterization of attosecond pulses from plasma mirrors
    L. Chopineau, A. Denoeud, A. Leblanc, E. Porat, P. Martin, H. Vincenti and F. Quéré, Nat. Phys., 17 (2021)
  6. Reflecting petawatt lasers off relativistic plasma mirrors: a realistic path to the Schwinger limit
    F. Quéré and H. Vincenti, HPLSE, 9 (2021)
  7. Probing strong-field QED with Doppler-boosted PetaWatt-class lasers
    L. Fedeli, A. Sainte-Marie, N. Zaim, M. Thévenet, A. Myers, J.-L. Vay, F. Quéré and H. Vincenti, Phys. Rev. Lett., 123, 105009 (2021)
  8. Techniques to generate intense isolated attosecond pulses from relativistic plasma mirrors
    H. Kallala, F. Quéré and H. Vincenti, Phys. Rev. Research, 2, 043007 (2020)
  9. Interaction of ultra-intense radially-polarized lasers with dense plasmas
    N. Zaim, D. Guénot, L. Chopineau, A. Denoeud, O. Lundh, H. Vincenti, F. Quéré and J. Faure, Phys. Rev. Lett., 123, 105009 (2020)
  10. Identification of the coupling mechanisms between ultra-intense laser light and dense plasmas
    L. Chopineau, A. Leblanc, G. Blaclard, A. Denoeud, M. Thévenet, J-L Vay, H. Vincenti and F. Quéré Phys. Rev. Lett., 123, 105009 (2019)
  11. Achieving extreme light intensities using optically-curved relativistic plasma mirrors
    H. Vincenti, Phys. Rev. Lett., 123, 105009 (2019)
  12. Ultrahigh-order Maxwell solver with extreme scalability for electromagnetic PIC simulations of plasmas
    H. Vincenti and J-L. Vay, Comp. Phys. Comm., 228, 22-29 (2018)
  13. Diagnostics, control and performance parameters for the BELLA high repetition rate petawatt class laser
    K. Nakamura, H-S. Mao, A. J. Gonsalves, H. Vincenti, D. E. Mittelberger, J. Daniels, A. Magana, C. Toth, W. P. Leemans, IEEE Journal of Quantum Electronics, 53, 4 (2017)
  14. Pseudo-spectral Maxwell solvers for an accurate modelling of Doppler harmonic generation on plasma mirrors with Particle-In-Cell codes,
    G. Blaclard, H. Vincenti, R. Lehe and J-L. Vay, Phys. Rev. E, 93, 033305 (2017)
  15. Spatial properties of high-order harmonic beams from plasma mirrors: A ptychographic study,
    A. Leblanc, S. Monchocé, H. Vincenti, S. Kahaly and F. Quéré, Phys. Rev. Lett., 119, 155001 (2017)
  16. An efficient and portable SIMD algorithm for the charge/current deposition in Particle-In-Cell codes,
    H. Vincenti, M. Lobet, R. Lehe, R. Sasanka and J-L. Vay, Comp. Phys. Comm., 210, 145-154 (2017)
  17. PIC codes on the road to exascale architectures,
    H. Vincenti, M. Lobet, R. Lehe, J-L. Vay and J. Deslippe, Chapman and Hall/CRC Computational Science Series, chapter 17, ISBN 9781138197541 (2017)
  18. Detailed analysis of the effect of stencil spatial variations with arbitrary high-order finite difference Maxwell solver,
    H. Vincenti and J-L Vay, Comp. Phys. Comm., 200, 147-167 (2016)
  19. On the physics of electron ejection from laser-irradiated overdense plasmas
    M. Thévenet, H. Vincenti and J. Faure, Phys. plasmas, 23, 6 (2016)
  20. Vacuum Laser acceleration of relativistic electrons using plasma mirror injectors
    M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quéré and J. Faure, Nat. Phys., 12, 4 (2016)
  21. Recent advances in high-performance modeling of plasma-based acceleration using the full PIC method
    J.-L. Vay R. Lehe, H. Vincenti, B. B. Godfrey, I. Haber and P. Lee, Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment, 829, 353-357 (2016)
  22. WarpIV: In situ visualization and analysis of ion accelerator simulations
    O. Rübel, B. Loring, J-L. Vay, D. P. Grote, R. Lehe, S. Bulanov, H. Vincenti, E. W. Bethel, IEEE Computer Graphics and Applications, 36, 3 (2016)
  23. Evaluating and optimizing the NERSC workload on knights landing
    T. Barnes, B. Cook, J. Deslippe, D. Doerfler, B. Friesen, Y. He, T. Kurth, T. Koskela, M. Lobet, T. Malas, L. Oliker, A. Ovsyannikov, A. Sarje, J-L. Vay, H. Vincenti,….,J. Dennis, Conference Paper (2016)
  24. Applying the roofline performance model to the Intel Xeon Phi knights landing processor
    D. Doerfler, J. Deslippe, S. Williams, L. Oliker, B. Cook, T. Kurth, M. Lobet, T. Malas, J-L Vay and H. Vincenti, Book Chapter, ISC workshops, 9945, pp 339-353 (2016)
  25. Optical properties of relativistic plasma mirrors
    H. Vincenti, S. Monchocé, S. Kahaly, P. Martin, G. Bonnaud and F. Quéré, Nat. Comm., 5, 3403 (2014)
  26. Direct observation of density gradient effects in harmonic generation from plasma mirrors
    S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin and F. Quéré, Phys. Rev. Lett., 110, 175001 (2013)
  27. Attosecond lighthouses from plasma mirrors
    J. Wheeler, A. Borot, S. Monchocé, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens and F. Quéré, Nat. Phot., 6, 829-833 (2013)
  28. Attosecond lighthouses: how to use spatio-temporally coupled light fields to generate isolated attosecond pulses
    H. Vincenti and F. Quéré, Phys. Rev. Lett., 108, 113904 (2013)

Prix/ Prizes