An overview is given of what mathematical physics can currently say about the vacuum state for relativistic quantum field theories on Minkowski space. Along with a review of classical results such as the Reeh-Schlieder Theorem and its immediate and controversial consequences, more recent results are discussed. These include the nature of vacuum correlations and the degree of entanglement of the vacuum, as well as the striking fact that the modular objects determined by the vacuum state and algebras of observables localized in certain regions of Minkowski space encode a remarkable range of physical information, from the dynamics and scattering behavior of the theory to the external symmetries and even the space-time itself. In addition, an intrinsic characterization of the vacuum state provided by the modular objects is discussed.
University of Florida