According to a widely held opinion, Life corresponds to a physical state far from equilibrium. Thus, whereas such fundamental notion of equilibrium physics as ‘ground state’ is widely used to describe the properties of biological macromolecules or even macromolecular complexes, it is considered of no use for the description of a whole living cell. I would like to challenge this preconception, by discussing how the idea of a cell in a ground state is possible, and what could be the nature of the forces responsible for its stability. Strikingly, this line of enquiry leads to a novel justification of the self-organization principle, as the action of the forces responsible for the stability of the ground state amounts to “optimization without natural selection of replicators”. Unlike the statistical-mechanical approaches to self-organization, our approach does not encounter the problem of ‘tradeoff between stability and complexity’ at the level of individual cell.
INSERM, Institut Gustave Roussy