| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST | English
Univ. Paris-Saclay

Les sujets de thèses

56 sujets IRAMIS

Dernière mise à jour :


• Biophysique moléculaire

• Chimie

• Chimie analytique

• Chimie physique et électrochimie

• Energie verte et/ou décarbonnée dont bioprocédés et valorisation des déchets

• Instrumentation

• Instrumentation nucléaire et métrologie des rayonnements ionisants

• Interactions rayonnement-matière

• Matière molle et fluides complexes

• Matière ultra-divisée, physico-chimie des matériaux

• Matériaux et applications

• Physique atomique et moléculaire

• Physique du solide, surfaces et interfaces

• Physique mésoscopique

• Physique théorique

• Technologies pour la santé et l’environnement, dispositifs médicaux

 

Polymérisation et diffusion de l'hémoglobine dans des composés mixtes HbYxHbS(1-x) avec Y=At, A0, F…

SL-DRF-23-0418

Laboratoire d'accueil :

Laboratoire Léon Brillouin (LLB)

Groupe Biologie et Systèmes Désordonnés

Saclay

Contact :

Stéphane Longeville

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Stéphane Longeville
CEA - DRF

01 69 08 75 30

Directeur de thèse :

Stéphane Longeville
CEA - DRF

01 69 08 75 30

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=longevil

Labo : https://iramis.cea.fr/llb/MMB/

La drépanocytose (SCD) est une maladie génétique du sang qui provoque une anémie sévère. Elle résulte d’une mutation de l’hémoglobine, la protéine transporteuse d'oxygène présente dans les globules rouges (RBC), qui va polymériser et provoquer la déformation des cellules, d’une forme biconcaves caractéristique souple à une forme de faucille rigide. Les cellules déformées vont obstruer les capillaires sanguins, induire une augmentation de la pression artérielle et finalement conduire à une dégénérescence des différents organes.



L'administration d’hydroxyurée est un des traitements pharmacologiques de la drépanocytose ; cette molécule favorise la synthèse de l'hémoglobine fœtale (HbF), qui conduit à un mélange d'hémoglobine HbFxHbS(1-x) dans le sang. L'HbF inhibant partiellement la polymérisation de l'HbS. La thérapie génique est également utilisée comme traitement de cette maladie en stimulant la production d'une hémoglobine thérapeutique (HbAt), ou de l’hémoglobine normale (HbA0). En collaboration avec le service des maladies génétiques du globule rouge de l'hôpital Henri-Mondor, nous proposons d'étudier, d'un point de vue moléculaire, l'effet de l'ajout de différents types d'hémoglobine sur le processus de polymérisation ainsi que ses conséquences sur la capture d’oxygène par les globules rouges.Ce sujet est développé en coopération avec la Techniche Universität de Munich.





Identification du repliement tri-dimensionnel d’ARN messagers viraux par dichroïsme circulaire

SL-DRF-23-0740

Domaine de recherche : Biophysique moléculaire
Laboratoire d'accueil :

Laboratoire Léon Brillouin (LLB)

Groupe Biologie et Systèmes Désordonnés

Saclay

Contact :

Véronique ARLUISON

Date souhaitée pour le début de la thèse : 01-04-2023

Contact :

Véronique ARLUISON
Université de Paris - DRF/IRAMIS/LLB/GBSD

01 69 08 32 82

Directeur de thèse :

Véronique ARLUISON
Université de Paris - DRF/IRAMIS/LLB/GBSD

01 69 08 32 82

Page perso : http://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=varluiso

Labo : http://iramis.cea.fr/LLB/MMB/

Les acides ribonucléiques (ARN) jouent un rôle crucial dans la cellule. De la même manière que les protéines, ils peuvent adopter une structure qui résulte généralement de l'assemblage de sous-structures minimales (appelées structures secondaires) en une structure plus complexe appelée structure tertiaire. Nos analyses, réalisées entre autres au synchrotron SOLEIL, ont montré que la technique de Dichroïsme Circulaire (CD) ou de Dichroïsme Circulaire sur Synchrotron (SRCD) fournit des informations détaillées sur la conformation des ARNs, notamment concernant les paramètres hélicoïdaux et l'empilement et l’appariement des bases (Le Brun et al., 2020 ; Wien et al., 2021).

Récemment, des vaccins utilisant des ARN messager (ARNm) encapsulés dans des nanoparticules lipidiques (LNPs) agissant comme vecteurs sont apparus sur le marché pharmaceutique (Hou et al., 2021). Ceux-ci utilisent des nucléotides modifiés tels que la méthyl-pseudouridine, pour stabiliser l’ARNm (Morais et al., 2021). De plus, il a aussi été observé que la méthode d’encapsulation des ARNm dans des LNPs (par des méthodes type « T-mix », « cross-flow » … (Evers et al., 2018)), ainsi que la composition lipidique des LNPs peuvent influencer l’efficacité vaccinale. La caractérisation structurale des ARNm au sein des LNPs est donc un élément critique afin d’optimiser la formulation et les méthodes d’assemblage de ces vaccins. En ce sens, il est donc indispensable de disposer d’une approche analytique donnant accès à la structure 3D des ARNm issus de la transcription encapsulés au sein des LNPs. Cette méthode doit être rapide, peu consommatrice d'échantillon et devra permettre une analyse cinétique des changements structuraux au cours de l’encapsulation. En ce sens, le Dichroïsme Circulaire est une méthode de choix pour cette analyse car elle permet d’analyser rapidement et facilement des ARN en solution en enregistrant des spectres d’absorption de la lumière polarisée, précisément de la différence entre la lumière polarisée circulairement gauche et droite. Compte tenu de la présence du ribose chiral relié aux bases qui absorbent la lumière dans la bande spectrale des ondes ultra-violets (UV), ces molécules peuvent être analysées en CD dans l’UV proche ou lointain (320-170 nm). Les changements structuraux des ARN dus à la salinité, au pH et à la température, etc… peuvent donc être suivis au cours du temps y compris dans le contexte des LNPs utilisés pour les vaccins.

Grâce à son extension spectrale jusqu’à 170 nm, la technique de SRCD est donc la méthode la plus adaptée car elle donne accès aux transitions électroniques dites de « transfert de charges » intra moléculaires des polynucléotides, qui permettent une analyse complète de la structure des ARNm. Cependant, à ce jour, une approche théorique déterminant « ab-initio » les spectres CD/SRCD basée sur la composition des polynucléotides n’existe pas. Ainsi, la méthode de CD est considérée comme une méthode heuristique, et l’interprétation des spectres ne peut se faire sans une « bibliothèque de référence » complète incluant des ARN y compris avec des nucléotides modifiés.

Catalyseurs innovants à atomes isolés pour l’hydrogénation et la déshydrogénation du CO2 et des LOHC

SL-DRF-23-0385

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire de Chimie Moléculaire et de Catalyse pour l’Energie (LCMCE)

Saclay

Contact :

Caroline GENRE

Thibault CANTAT

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Caroline GENRE
CEA - DRF/IRAMIS/NIMBE/LCMCE


Directeur de thèse :

Thibault CANTAT
CEA - DRF/IRAMIS/NIMBE/LCMCE

01 69 08 43 38

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=cgenre

Labo : https://iramis.cea.fr/Pisp/thibault.cantat/index.php

Voir aussi : https://iramis.cea.fr/nimbe/LCMCE/

Les catalyseurs à atomes isolés (ou single-atom catalysts, SAC) sont des catalyseurs solides dont tous les atomes métalliques actifs sont isolés et stabilisés sur un support, ou par un alliage avec un autre métal. L’activité étant porté par des atomes métalliques isolés, leur sélectivité est excellente, et les qualités des SAC s’approchent de celles de catalyseurs homogènes tout en offrant les avantages de robustesse et d’aisance de manipulation des catalyseurs solides. Les SACs, qui permettent une forte économie en métaux catalytiques, sont de bons candidats pour la mise en place de transformations favorisant l’économie circulaire du carbone et le stockage d’énergie par le vecteur hydrogène. En particulier, ils peuvent jouer un rôle important pour l’hydrogénation du CO2 ainsi que pour les réactions d’hydrogénation et déshydrogénation de porteurs d’hydrogène liquides organiques (LOHC), qui sont un élément essentiel pour le transport et le stockage d’énergie par le vecteur hydrogène. Cependant ils restent assez peu décrits pour ces transformations, et les exemples existants impliquent le plus souvent des métaux nobles (Pd, Pt, Au).



L’objectif de cette thèse est double. D’une part, il s’agit de synthétiser et caractériser des catalyseurs à atomes isolés innovants à base de métaux non-nobles, (Ru, Fe, Mn, Co, Cu) capables de catalyser l’hydrogénation réversible de liaisons C=O dans le CO2 et le couplage déshydrogénant d’alcools avec l’eau et d’alcools entre eux. D’autre part, il s’agit d’explorer les possibilités des systèmes alcool + eau/acide carboxylique comme LOHC.



Le travail consistera à synthétiser, caractériser et tester l’activité catalytique de différents catalyseurs à atomes isolés. L’étudiant sera formé aux techniques de synthèse sous atosphère inerte, de catalyse en réacteurs sous pression, ainsi qu’à l’utilisation de diverses techniques d’analyse : SEM, HR-TEM, HAADF-TEM, EDX, XPS, XRDm



Nanostructures à base de porphyrines

SL-DRF-23-0001

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Stéphane CAMPIDELLI

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Stéphane CAMPIDELLI
CEA - DRF/IRAMIS/NIMBE/LICSEN

01-69-08-51-34

Directeur de thèse :

Stéphane CAMPIDELLI
CEA - DRF/IRAMIS/NIMBE/LICSEN

01-69-08-51-34

Page perso : http://iramis.cea.fr/Pisp/stephane.campidelli/

Labo : http://iramis.cea.fr/nimbe/licsen/

Le but de ce projet est de synthétiser de nouvelles molécules à base de porphyrines pour la fabrication de nanostructures mono- et bidimensionnelles. Les porphyrines sont des macrocycles tetrapyrroliques aromatiques ; les dérivés de porphyrines sont des briques essentielles du vivant, notamment pour le transport d’oxygène, pour les réactions d’oxydation et également pour la photosynthèse. Au-delà de cette importance dans le domaine du vivant, les propriétés optiques et électroniques des porphyrines en font un des matériaux les plus étudiés pour la conversion d’énergie, la catalyse, l’optique/optoélectronique et la médecine.



Dans le cadre de ce projet, les porphyrines synthétisées seront étudiées en collaboration avec plusieurs groupes de physiciens dans le but de réaliser sur surface par voie "bottom-up" des réseaux covalents (1D ou 2D) et d’étudier leur propriétés optiques et électroniques.
Relation structures - propriétés dans les nanoparticules de graphène

SL-DRF-23-0002

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Stéphane CAMPIDELLI

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Stéphane CAMPIDELLI
CEA - DRF/IRAMIS/NIMBE/LICSEN

01-69-08-51-34

Directeur de thèse :

Stéphane CAMPIDELLI
CEA - DRF/IRAMIS/NIMBE/LICSEN

01-69-08-51-34

Page perso : http://iramis.cea.fr/Pisp/stephane.campidelli/

Labo : http://iramis.cea.fr/nimbe/licsen/

Depuis sa découverte qui a valu le Prix Nobel de Physique à A. Geim et K. Novoselov en 2010, le graphène a provoqué l’engouement de la communauté scientifique. À cause de ces propriétés électroniques, le graphène est vu comme un matériau de choix pour de très nombreuses applications : électronique/optoélectronique rapide et flexible, électrode ou matériau actif dans le domaine des énergies renouvelables (photovoltaïque, piles à combustible, supercondensateurs).



Pour de nombreuses applications, il convient d’être capable de modifier et de contrôler les propriétés électroniques du graphène. Ceci peut être réalisé grâce à l’apport de la chimie organique. Dans ce sujet, nous proposons de synthétiser des motifs graphéniques en particulier des nanoparticules de graphène et d’étudier leurs propriétés d’absorption et d’émission dans l’IR. Ce projet sera développé en collaboration avec des physiciens, le candidat devra donc avoir un gout prononcé pour le travail pluridisciplinaire.
Réactivité chimique des matrices polymères au cours du vieillissement : formation de composés non intentionnels et implications pour le recyclage des plastiques

SL-DRF-23-0044

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Stephanie Devineau

Jean-Philippe RENAULT

Date souhaitée pour le début de la thèse : 01-09-2023

Contact :

Stephanie Devineau
CEA - LIONS


Directeur de thèse :

Jean-Philippe RENAULT
CEA - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 50

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=sdevineau

Labo : https://iramis.cea.fr/nimbe/lions/

Le recyclage des 460 millions de tonnes de plastiques produits chaque année représente un enjeu environnemental et énergétique majeur du 21e siècle. L’utilisation de plastiques recyclés constitue un important levier pour réduire les émissions globales de CO2 associées à la production et à la transformation des plastiques vierges. Notre capacité à recycler les plastiques reste cependant fortement limitée par l’apparition de nouveaux composés chimiques au cours du vieillissement des matières à recycler. Nous proposons dans cette thèse d'étudier le vieillissement des additifs des plastiques en combinant une étude historique et une approche expérimentale. Dans une première approche, nous documenterons les compositions et procédés de transformation des matières plastiques à partir de 1950, et, à partir d'échantillons datés, les composés nouveaux formés lors du vieillissement. Dans une seconde approche, nous simulerons les processus de vieillissement par irradiation contrôlée, de façon à reconstituer la ou les chaines réactionnelles. Les produits issus des vieillissements naturels et artificiels seront étudiés en terme de toxicité.

Stabilité de cellules et modules pérovskites triple mésoscopiques en conditions réelles d'utilisation extérieure

SL-DRF-23-0165

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Frédéric Oswald

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Frédéric Oswald
CEA - DRF/IRAMIS/NIMBE/LICSEN

01 69 08 21 49

Directeur de thèse :

Frédéric Oswald
CEA - DRF/IRAMIS/NIMBE/LICSEN

01 69 08 21 49

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=foswald

Labo : https://iramis.cea.fr/nimbe/licsen/

Pour réussir leur entrée sur le marché du photovoltaïque, les cellules solaires à pérovskite doivent encore relever plusieurs défis de taille. L'évolutivité des processus et la stabilité des dispositifs doivent être assurées. Cette dernière en particulier a longtemps été l'une des principales causes de scepticisme et est encore sous-estimé dans la plupart des études.



Les conditions de fonctionnement en extérieur sont rarement prises en compte et seuls quelques rapports peuvent être trouvés. Tous les rapports montrent que, à mesure que le temps de test augmente, les dispositifs subissent des dégradations réversibles et, plus important encore, irréversibles, qui ne sont potentiellement pas détectées lors du suivi du point de puissance maximale (MPP) à température et à irradiance constantes d'un soleil, confirmant la nécessité de tests en extérieur dans des conditions opérationnelles réelles.

Cette thèse s'appuie sur : la conception, la fabrication et la caractérisation de dispositifs destinés à être placés sur banc d'essai extérieur pour des essais en conditions opérationnelles.

Synthèse d’hydroborane et borohydrure par hydrogénolyse pour le stockage de l’hydrogène

SL-DRF-23-0365

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire de Chimie Moléculaire et de Catalyse pour l’Energie (LCMCE)

Saclay

Contact :

Alexis MIFLEUR

Thibault CANTAT

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Alexis MIFLEUR
CEA - DRF/IRAMIS/NIMBE/LCMCE

01 69 08 57 43

Directeur de thèse :

Thibault CANTAT
CEA - DRF/IRAMIS/NIMBE/LCMCE

01 69 08 43 38

Page perso : https://iramis.cea.fr/Pisp/thibault.cantat/Alexis_Mifleur.php

Labo : https://iramis.cea.fr/nimbe/

Voir aussi : https://iramis.cea.fr/Pisp/thibault.cantat/index.php

L'hydrogène est un excellent support de stockage d'énergie, en particulier dans le cadre d’une transition énergétique qui s’appuierait sur des énergies renouvelables intermittentes. Se pose toutefois la problématique de son stockage et de son transport, plusieurs technologies sont actuellement explorées et le stockage de l’hydrogène dans des matériaux solides est une option qui présente plusieurs avantages. Les borohydrures, en particulier ceux de métaux alcalins sont des matériaux solides stables permettant de stocker une quantité importante d’hydrogène en proportion massique (19 wtH2% pour LiBH4, 10 wtH2% pour NaBH4). Cependant leur utilisation est encore limitée en raison de synthèse et de recyclage très énergivores.



Nous proposons lors de cette thèse de développer de nouvelles méthodologies afin de générer des hydrures de bore à partir d’hydrogène afin d’immobiliser ce dernier dans des matériaux solides pour des utilisations de stockage énergétique. La transformation des liaisons B-X (X : O, Cl) vers leurs équivalents B-H représente un véritable défi en raison d’une part de la forte affinité du bore avec l’oxygène mais également de l’hydricité importante des composés cibles qui en font des donneurs d’hydrure réactifs. Des travaux analogues ont été décrits au LCMCE ainsi que par d’autres groupes pour la synthèse d’hydrosilanes et s’appuient sur des catalyseurs à base de métaux de transition mais aussi d’organo-catalyseurs à base de bore.



Ce projet doctoral permettra au doctorant de développer des compétences pointues en catalyse homogène, caractérisation de complexes moléculaires, et manipulation de gaz.
Textures magnétiques cachées dans les cuprates supraconducteurs à haute températures critiques

SL-DRF-23-0111

Domaine de recherche : Chimie
Laboratoire d'accueil :

Laboratoire Léon Brillouin (LLB)

Groupe 3 Axes (G3A)

Saclay

Contact :

Dalila Bounoua

Philippe Bourges

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Dalila Bounoua
CEA - DRF/IRAMIS/LLB/G3A

0169085181

Directeur de thèse :

Philippe Bourges
CEA - DRF/IRAMIS/LLB/G3A

0169086831

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=dbounoua

Labo : https://www-llb.cea.fr/NFMQ/

Voir aussi : https://www-llb.cea.fr/

Les supraconducteurs non-conventionnels à base d'oxyde de cuivre détiennent le record des températures de transition supraconductrices les plus élevées atteintes jusqu’à présent, à pression ambiante. Ces composés présentent un diagramme de phase électronique très complexe dominé par une mystérieuse phase de pseudogap (PG) que l'on pense jouer un rôle clé dans l'émergence de la supraconductivité. Malgré des décennies de recherches, l'origine de cette phase de PG demeure une énigme non résolue. La phase de PG renferme des instabilités électroniques et, en particulier, une phase magnétique qui brise les symétries d’inversion et de renversement par le temps, interprétée comme la signature d'un état quantique magnéto-électrique de type « boucles de courants ».



Récemment, nous avons découvert que ces états quantiques conduisaient également à la formation d’un nouveau type de corrélations magnétiques au sein des plans CuO2. La combinaison de ces deux types de phases magnétiques serait alors à l’origine d’une texture magnétique cachée qui pourrait jouer un rôle crucial dans la physique du PG, mettant en lumière une autre pièce du puzzle de la supraconductivité à haute température critique et ouvrant la voie à de nouvelles études expérimentales.



Le projet de thèse que nous proposons se déroulera au Laboratoire Léon Brillouin en collaboration avec le Service de Physique de l’Etat Condensé (Saclay). Il est divisé en deux volets expérimentaux visant à réaliser une étude systématique de ces nouvelles corrélations magnétiques. La première partie du projet sera consacrée à la cristallogenèse de plusieurs familles de cuprates au moyen de la technique de la fusion de la zone solvante. Le second volet concernera l'étude du magnétisme exotique issu d’états de type « boucles de courants », dans les monocristaux synthétisés, par diffusion des neutrons polarisés.
Utilisation de gaz issus du CO2 pour la synthèse de molécules à haute valeur ajoutée

SL-DRF-23-0324

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire de Chimie Moléculaire et de Catalyse pour l’Energie (LCMCE)

Saclay

Contact :

Emmanuel NICOLAS

Thibault CANTAT

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Emmanuel NICOLAS
CEA - DRF/IRAMIS/NIMBE/LCMCE

01 69 08 26 38

Directeur de thèse :

Thibault CANTAT
CEA - DRF/IRAMIS/NIMBE/LCMCE

01 69 08 43 38

Page perso : http://iramis.cea.fr/nimbe/Phocea/Membres/Annuaire/index.php?uid=enicolas

Labo : http://iramis.cea.fr/nimbe/lcmce/

Voir aussi : https://iramis.cea.fr/Pisp/thibault.cantat/

La synthèse industrielle de produits chimiques repose actuellement sur des voies d’oxydation de composés fossiles. Dans le contexte actuelle de transition énergétique et de réduction de la dépendance aux produits pétroliers, de nouvelles voies de sources de carbone doivent être utilisées pour permettre de maintenir la production de ces composés indispensables à nos sociétés. Le CO2 est un bon candidat, mais est peu réactif. Sa conversion en CO, couplé à la production d’H2 par électrolyse, permet la formation de syngas (mélange CO:H2) qui est un gaz réactif permettant la synthèse de nombreux produits chimiques, entre autres grâce au procédé Fisher-Tropsch.



Nous proposons dans ce projet de thèse de concevoir de nouveaux catalyseurs permettant la synthèse d’alkylamines par réaction de Fisher-Tropsch sur des amines, en utilisant des syngas issus de sources renouvelables. Le ou la doctorant(e) cherchera de nouveaux catalyseurs, les optimisera, en les testant dans la réaction de Fisher-Tropsch sur amines. L’objectif sera d’avoir un catalyseur à la fois efficace, sélectif, et peu sensible à des contaminants tels que O2 ou H2O. Une fois ce système optimisé, le catalyseur sera testé dans des dispositifs à concevoir et construire, permettant l’utilisation de syngas réels fournis par d’autres groupes au CEA, formés par gaséification de biomasse par exemple.
Hyperpolarisation par parahydrogène et extraction liquide-liquide pour une RMN plus sensible et plus résolue

SL-DRF-23-0732

Domaine de recherche : Chimie analytique
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Structure et Dynamique par Résonance Magnétique (LCF) (LSDRM)

Saclay

Contact :

Gaspard HUBER

Date souhaitée pour le début de la thèse : 01-09-2023

Contact :

Gaspard HUBER
CEA - DRF/IRAMIS/NIMBE/LSDRM

01 69 08 64 82

Directeur de thèse :

Gaspard HUBER
CEA - DRF/IRAMIS/NIMBE/LSDRM

01 69 08 64 82

Page perso : https://iramis.cea.fr/Pisp/gaspard.huber/

Labo : https://iramis.cea.fr/nimbe/lsdrm/

Pour l'analyse d'un mélange de molécules organiques en solution, la Résonance Magnétique Nucléaire (RMN) est, avec la spectrométrie de masse, l'une des deux techniques analytiques les plus utilisées. La RMN est souvent considérée comme étant plus quantitative, plus reproductible, et plus à même d'identifier un soluté. Cependant, elle manque de sensibilité et de résolution. La sensibilité peut être augmentée en employant les propriétés particulières du parahydrogène pour créer un état dit hyperpolarisé augmentant transitoirement mais considérablement le signal RMN. La résolution quant à elle peut notamment être améliorée par l'emploi de spectroscopie RMN multidimensionnelle, nécessairement rapide dans le cas de l'analyse d'espèces hyperpolarisées. L'extraction liquide-liquide, un procédé de séparation très fréquemment employé, utilise deux phases non miscibles dans lesquelles les solutés se répartissent selon leur affinité. A condition qu'elle soit suffisamment rapide, elle permet d'observer spécifiquement les solutés hyperpolarisés dans chaque phase, comme l'a montré une étude préliminaire pour un système chloroforme/eau. Le but de ce projet de thèse est de développer cette approche combinant hyperpolarisation par parahydrogène et extraction, de l'étendre à de nouveaux systèmes biphasiques et de l’appliquer à la détection, l'identification et la quantification de solutés très dilués. L'objectif ultime est d'appliquer cette méthodologie à des échantillons comportant par essence de nombreux solutés, comme ceux provenant de la chimie de synthèse ou de la métabolomique.
Batteries tout-solide à base d’électrolytes composites polymère-ceramique : caractérisation multi-échelle et compréhension des phénomènes aux interfaces

SL-DRF-23-0607

Domaine de recherche : Chimie physique et électrochimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire d’étude des éléments légers (LEEL)

Saclay

Contact :

Saïd Yagoubi

Thibault CHARPENTIER

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Saïd Yagoubi
CEA - DRF/IRAMIS/NIMBE/LEEL

+ 33 1 69 08 42 24

Directeur de thèse :

Thibault CHARPENTIER
CEA - DRF/IRAMIS/NIMBE/LSDRM

33 1 69 08 23 56

Page perso : http://iramis.cea.fr/Pisp/said.yagoubi/

Labo : http://iramis.cea.fr/nimbe/leel/

Voir aussi : http://iramis.cea.fr/nimbe/lsdrm/

Les batteries lithium-ion, largement présentes dans notre vie quotidienne, ont révolutionné les applications portables et sont maintenant utilisées dans les véhicules électriques. Cependant, le développement de nouvelles générations de batteries pour les futures applications dans le transport et le stockage d'électricité à partir de sources renouvelables est vital pour atténuer le réchauffement climatique. Le sodium est plus abondant sur terre que le lithium et donc attractif notamment pour des applications de stockage stationnaire à grande échelle. La technologie lithium-ion est généralement considérée comme la solution privilégiée pour les applications nécessitant une haute densité d’énergie, alors que la technologie sodium-ion est particulièrement intéressante pour des applications qui requièrent de la puissance.



Néanmoins, les batteries à électrolyte liquide présentent des risques environnementaux comme les fuites et peuvent connaitre occasionnellement des problèmes de sécurité. Face aux exigences de respect de l’environnement et de sécurité, les batteries tout solide à base d’électrolytes solides, peuvent apporter une solution efficace tout en répondant aux besoins accrus de stockage d’énergie. Les verrous à lever pour permettre le développement de la technologie batterie "tout solide" résident essentiellement dans la recherche de nouveaux électrolytes solides chimiquement stables et ayant de bonnes performances électriques, électrochimiques et mécaniques. Dans cet objectif, ce projet de thèse vise à développer des électrolytes solides composites « céramique/polymère » ayant une performance élevée et une sécurité renforcée. Des caractérisations par spectroscopie d’impédance électrochimique (EIS) seront réalisées afin de comprendre la dynamique cationique (par Li+ ou Na+) à l’échelle macroscopique dans les électrolytes composites, tandis que la dynamique locale sera sondée à l'aide de techniques avancées de RMN à l'état solide (relaxation du 23Na/7Li, RMN 2D, RMN in-situ & operando). D’autres techniques de caractérisation comme la Diffraction des rayons X et des neutrons, l’XPS, la chrono-ampérométrie, le GITT…seront mises en œuvre pour une parfaite compréhension de la structure des électrolytes ainsi que des mécanismes de vieillissement aux interfaces électrolyte/électrolyte et électrolyte/électrode de la batterie tout solide.



Mots clés : électrolyte solide composite, batterie tout solide, interfaces, caractérisation multi-échelle, dynamique des ions Li+ et Na+, performance électrochimique, RMN du solide, diffraction RX/neutrons.

Contrôle de la conversion de l'énergie thermoélectrique par la chimie de coordination des ions de métaux de transition dans les liquides ioniques

SL-DRF-23-0400

Domaine de recherche : Chimie physique et électrochimie
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Sawako NAKAMAE

Veronika Zinovyeva

Date souhaitée pour le début de la thèse : 01-10-2022

Contact :

Sawako NAKAMAE
CEA - DRF/IRAMIS/SPEC/SPHYNX

0169087538

Directeur de thèse :

Veronika Zinovyeva
Université Paris Saclay - Laboratoire de Physique des 2 infinis Irène Joliot-Curie, CNRS-UMR 9012


Page perso : https://iramis.cea.fr/Pisp/sawako.nakamae/

Labo : https://iramis.cea.fr/spec/sphynx/

La thermoélectricité, la capacité d'un matériau à convertir la chaleur en énergie électrique, est connue dans les liquides depuis plusieurs décennies. Contrairement aux solides, ce processus de conversion dans les liquides prend plusieurs formes, notamment les réactions thermo-galvaniques entre les ions redox et les électrodes, la thermodiffusion d'espèces chargées et la formation d'une double couche électrique aux électrodes qui varie en fonction de la température. Les valeurs observées du coefficient Seebeck (Se = - DV/DT, le rapport entre la tension induite (DV) et la différence de température appliquée (DT)) sont généralement supérieures à 1 mV/K, un ordre de grandeur plus élevé que celles trouvées dans les semi-conducteurs solides. Le premier exemple fonctionnel d'un générateur thermoélectrique (TE) à base de liquide a été rapporté en 1986 en utilisant des sels redox de ferro/ferricyanure dans l'eau. Cependant, dû à la faible conductivité électrique des liquides l’efficacité de conversion était très faible, ce qui empêchait leur utilisation dans des applications de récupération de la chaleur perdue à basse température.



Les perspectives des générateurs TE-liquides se sont améliorés au cours de la dernière décennie avec le développement des liquides ioniques (LI). Les LI sont des sels fondus qui sont liquides en dessous de 100 °C. Par rapport aux liquides classiques, ils présentent de nombreuses caractéristiques favorables telles que des points d'ébullition élevés, une faible pression de vapeur, une conductivité ionique élevée, une faible conductivité thermique et aussi des valeurs de Se plus élevées. Plus récemment, une étude expérimentale menée par l’IJCLab et le SPEC a révélé que la complexation de couples redox de métaux de transition dans des liquides ioniques peut conduire à une hausse de leur coefficient Se significative de -1,6 à -5,7 mV/K, l'une des valeurs les plus élevées rapportées dans les cellules thermoélectriques à base de LI. Une compréhension électrochimique et physicochimique, et un contrôle précis de la spéciation des ions métalliques présentent sont nécessaire pour la conception rationnelle de la future technologie thermo-électrochimique.



Basé sur ces récentes découvertes, nous proposons une étude systématique de la chimie de coordination des ions redox de métaux de transition dans les liquides ioniques et les mélanges combinant des technique électrochimique et thermoélectrique. L’objectif à long terme associé à cette étude est de démontrer le potentiel d'application des cellules thermo-électrochimiques liquides basées sur des matériaux abordables, abondants et sans danger pour l'environnement pour la récupération d'énergie thermique comme outil d'efficacité énergétique.
Fonctionnalisation électrochimique de matériaux carbonés poreux pour les supercondensateurs.

SL-DRF-23-0774

Domaine de recherche : Chimie physique et électrochimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Bruno JOUSSELME

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Bruno JOUSSELME
CEA - DRF/IRAMIS/NIMBE/LICSEN

0169 08 91 91

Directeur de thèse :

Bruno JOUSSELME
CEA - DRF/IRAMIS/NIMBE/LICSEN

0169 08 91 91

Page perso : https://iramis.cea.fr/Pisp/bruno.jousselme/

Labo : https://iramis.cea.fr/nimbe/LICSEN/

Les demandes croissantes des systèmes de stockage d'énergie nécessitent en outre des batteries et/ou des supercondensateurs avec de fortes densités de courant et une large plage de potentiels de fonctionnement. Les batteries métal-ion rechargeables et les supercondensateurs fonctionnant en milieu aqueux présentent les avantages d’avoir une conductivité ionique élevée, d’être très sécurisés et peuvent être produits à faible coût ; mais présentent l’inconvénient majeur de fonctionner dans une gamme de potentiels limitée liée à l’oxydation et la réduction de l’eau. Dans ce contexte, le travail de thèse proposés s’intéresse à la fonctionnalisation de matériaux carbonés poreux et la fabrication d’une couche d’interface permettant de limiter les réactions parasites avec l’eau.
Simulations ab initio de catalyseurs pour la chimie verte

SL-DRF-23-0719

Domaine de recherche : Chimie physique et électrochimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Structure et Dynamique par Résonance Magnétique (LCF) (LSDRM)

Saclay

Contact :

Rodolphe POLLET

Patrick BERTHAULT

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Rodolphe POLLET
CEA - DRF/IRAMIS/NIMBE/LSDRM

01 69 08 37 13

Directeur de thèse :

Patrick BERTHAULT
CEA - DRF/IRAMIS/NIMBE/LSDRM

+33 1 69 08 42 45

Page perso : https://iramis.cea.fr/Pisp/rodolphe.pollet/

Labo : https://iramis.cea.fr/nimbe/lsdrm/

La catalyse est aujourd’hui au cœur des procédés industriels de la chimie. Par exemple, la conversion d’un nitrile vers un amide, qui donne lieu à des applications industrielles en pharmacologie, en agrochimie, en chimie de synthèse, ou en chimie des polymères, par hydratation nécessite un catalyseur efficace en raison de sa lente cinétique. Pour des raisons autant environnementales que sociétales, l’un des enjeux majeurs aujourd’hui est de découvrir des catalyseurs sans métaux de transition, non toxiques, non corrosifs, et disponibles à un coût modéré. Un exemple de catalyseur remplissant ces critères est l'hydroxyde de choline.



Pour cette thèse, l’étudiant sera formé à la technique de simulation par dynamique moléculaire ab initio couplée à une méthode qui permet de reconstruire le paysage d’énergie libre de la réaction d'hydratation de différents nitriles aromatiques en faisant varier les conditions de l’expérience in silico. Il devra aussi effectuer en amont des calculs de chimie quantique permettant de décrire l’ensemble des interactions inter et intramoléculaires existantes. Cette approche a déjà été utilisée avec succès au sein de notre laboratoire pour décrire d’autres réactions chimiques en solution aqueuse et devra être appliquée au domaine innovant de la chimie verte.
Système d'irradiation de biogaz

SL-DRF-23-0585

Domaine de recherche : Energie verte et/ou décarbonnée dont bioprocédés et valorisation des déchets
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Marie GELEOC

Jean-Philippe RENAULT

Date souhaitée pour le début de la thèse :

Contact :

Marie GELEOC
CEA - DRF/IRAMIS/NIMBE/LIONS


Directeur de thèse :

Jean-Philippe RENAULT
CEA - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 50

Page perso : https://iramis.cea.fr/Pisp/marie.geleoc/

Labo : https://iramis.cea.fr/nimbe/lions/

Voir aussi : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=jrenault

Dans le mix énergétique actuel, le gaz est une énergie immédiatement disponible, stockable et qui s’appuie sur un réseau très large de distribution. Il est envisageable de remplacer complétement le gaz fossile par un gaz d’origine 100% renouvelable à horizon 2050. La méthanisation est la source la moins chère pour arriver à cet objectif. Cependant, la qualité des biogaz est beaucoup plus fluctuante que celle des gaz fossiles et des gaz "Power to gas". Ils nécessitent de fait des étapes de purification complexes et d’analyse avant de les injecter sur le réseau.La radiolyse (dégradation par les rayonnements ionisants) des impuretés pourrait être une méthode de choix pour mener à bien cette purification de façon simple, voire proposer des méthodes de stockage alternatif par fonctionnalisation du biométhane.
Calcul en flux de données pour la réduction des volumes de traitements

SL-DRF-23-0351

Domaine de recherche : Instrumentation
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Plateforme de Support à la Recherche

Saclay

Contact :

Mathieu THEVENIN

Date souhaitée pour le début de la thèse :

Contact :

Mathieu THEVENIN
CEA - DRF/IRAMIS/SPEC/PSR

+33 (0) 1 69 08 5887

Directeur de thèse :

Mathieu THEVENIN
CEA - DRF/IRAMIS/SPEC/PSR

+33 (0) 1 69 08 5887

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=mthevenin

Labo : https://iramis.cea.fr/

Voir aussi : https://www.linkedin.com/in/mathieu-thevenin-2275b03/

La consommation d'énergie des dispositifs informatiques est due 1) à la partie calcul, 2) aux accès à la mémoire et 3) à la logique de commande. La partie calcul augmente en raison de l'accroissement du volume des données et de la complexité algorithmique, ce qui affecte également la logique de commande et les accès à la mémoire. Certains paradigmes de calcul permettent de réduire légèrement les accès mémoire : le calcul en mémoire et le traitement en flux. Le premier intègre les éléments de calcul directement dans la mémoire, ce qui permet d'économiser les accès en lecture-écriture avant et après le calcul puisque celui-ci peut être effectué à la volée. La seconde traite les données directement dans le chemin de données ou dans un bus, en mode flux de données, sans nécessiter d'accès à une quelconque mémoire externe. Les deux approches peuvent être combinées. Le Stream Computing permet également la détection comprimée à proximité des capteurs, ce qui permet de traiter en temps réel d'énormes quantités de données sans nécessiter de stockage ni de post-traitement. De cette façon, il constitue un élément clé pour l'économie d'énergie. Nous proposons d'étudier la co-conception du code associé aux architectures informatiques pour obtenir une légère réduction des accès mémoire en combinant le traitement en flux et le calcul en mémoire. Le cas d'utilisation que nous proposons est basé sur la conception d'un processeur de signal numérique programmable utilisé dans l'instrumentation de nouvelle génération (physique quantique, physique nucléaire et des particules, radar) ou le calcul convolutif IA pour détecter des événements ou des caractéristiques qui nécessitent une bande passante de données extrêmement élevée sur plusieurs canaux, typiquement >16 > 4GSPs ; une latence extrêmement faible. L'architecture matérielle, le paradigme de programmation logicielle et l'impact sur la compilation seront étudiés. L'objectif est de développer un nouveau paradigme logiciel/matériel de calcul qui combine le calcul en mémoire et le traitement en flux, le modèle de programmation et la mise en œuvre d'outils de démonstration. Un Proof-of-Concept basé sur un FPGA moderne (Zynq Ultrascale) et un ASIC (partenariat avec CentraleSupelec) est attendu à la fin du doctorat. Ce PoC permettra d'étudier l'impact de différents types de hardwares (aussi bien déjà implémentés dans le FPGA que conçus sur mesure pendant le doctorat) pour obtenir des chiffres de consommation d'énergie.

Nouveaux concepts d'instruments pour la diffusion inélastique des neutrons sur source compacte

SL-DRF-23-0435

Domaine de recherche : Instrumentation nucléaire et métrologie des rayonnements ionisants
Laboratoire d'accueil :

Laboratoire Léon Brillouin (LLB)

Groupe 3 Axes (G3A)

Saclay

Contact :

Alain MENELLE

SYLVAIN PETIT

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Alain MENELLE
CEA - DSM/IRAMIS/LLB

0169089699

Directeur de thèse :

SYLVAIN PETIT
CEA - DRF/IRAMIS/LLB

01 69 08 60 39

Page perso : https://www-llb.cea.fr/Pisp/sylvain.petit/

Labo : https://iramis.cea.fr/llb/NFMQ/

Voir aussi : https://iramis.cea.fr/llb/Phocea/Vie_des_labos/Ast/ast_sstechnique.php?id_ast=2755

Les sources de neutrons compactes ont été proposées comme des installations capables de fournir des faisceaux de neutrons ayant un flux suffisant pour étudier la matière condensée. Si l'intensité moyenne des faisceaux sera inférieure à celle actuellement disponible sur les réacteurs de moyenne puissance, l'utilisation de faisceaux pulsés permettra une utilisation beaucoup plus efficace des neutrons produits. La diffusion inélastique des neutrons est une sonde unique de la dynamique des matériaux. Au cours de ce projet, nous étudierons les performances des différentes géométries connues d'instruments de diffusion inélastique des neutrons. Nous définirons et proposerons l'instrument le mieux adapté à l'étude d'un problème scientifique particulier. Des simulations utilisant les logiciels MacStass ou Vitess seront entreprises et une expérience de démonstration de l'efficacité du concept sera proposée.
Contrôle spatio-temporel de l'émission harmonique d'ordre élevé dans les cristaux

SL-DRF-23-0319

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Dynamique et Interactions en phase COndensée (DICO)

Saclay

Contact :

David Gauthier

Willem Boutu

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

David Gauthier
CEA - DRF/IRAMIS/LIDyL/BME


Directeur de thèse :

Willem Boutu
CEA - DRF/IRAMIS/LIDYL/DICO

0169085163

Page perso : https://iramis.cea.fr/Pisp/willem.boutu/

Labo : https://iramis.cea.fr/LIDYL/DICO/

Voir aussi : https://iramis.cea.fr/LIDYL/Phocea/Page/index.php?id=103&ref=99

La génération d’harmoniques laser d’ordre élevé dans les cristaux est une nouvelle source prometteuse de rayonnement cohérent ultrabref dans le domaine de l’extrême ultraviolet (50-150 nm). L’objectif de ce travail de thèse est de mettre à profit des progrès des technologies de nanofabrication pour mettre en forme la face d’émission du milieu non linéaire afin de manipuler les propriétés spatio-temporelle du rayonnement. En transposant les méthodes développées pour les méta-optiques linéaires dans le domaine visible au régime du champ fort, le candidat étendra leurs capacités de contrôle à une très large bande spectrale afin d’obtenir des impulsions attosecondes façonnées à volonté.
Défauts ponctuels induits par le rayonnement dans les fibres optiques à cœur en silice pure à très faible perte

SL-DRF-23-0794

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Laboratoire des Solides Irradiés (LSI)

Laboratoire des Solides Irradiés (LSI)

Saclay

Contact :

Antonino ALESSI

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Antonino ALESSI
CEA - DRF/IRAMIS/LSI/LSI


Directeur de thèse :

Antonino ALESSI
CEA - DRF/IRAMIS/LSI/LSI


Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=AA263164

Labo : https://portail.polytechnique.edu/lsi/fr

Voir aussi : https://portail.polytechnique.edu/lsi/fr/equipements/linstallation-sirius

Récemment, une nouvelle classe de fibres optiques avec des niveaux d'atténuation extrêmement faibles à 1550 nm est devenue disponible dans le commerce. Ces fibres à ultra-faible perte ont un noyau en silice pure et un revêtement dopé au fluor, donc en principe, elles doivent être résistantes aux radiations et elles devraient être, comme les autres classes de fibres à noyau en silice pure, de bons candidats pour fabriquer des capteurs de température, la contrainte, la pression, niveau le liquide… ponctuelle ou distribuée dans un environnement radiatif. Des publications récentes sur leur réponse aux radiations ont montré que contrairement aux attentes, ces fibres sont très sensibles aux radiations. La compréhension de cette sensibilité s’ajoute au manque de compréhension approfondie de l'origine de l'atténuation induite dans l’infrarouge pour différents types de fibres.



En effet, les bandes d'absorption induites dans l'UV-visible et attribuées à différents types de défauts ponctuels ne suffisent pas à expliquer les pertes observées dans le domaine du proche infrarouge. Puisqu'il est bien connu que l'irradiation est capable d'induire des défauts ponctuels et que leur transition d'absorption introduit des pertes de transmission, le but de la présente activité est d'utiliser des expériences de résonance paramagnétique électronique, d'absorption en ligne et de cathodoluminescence pour étudier la génération de défauts ponctuels et la relation entre eux et l'absorption.

Optimisation d'une source de lumière extrême pour l'étude des états plasma dominés par la QED et pour poursuivre des applications technologiques

SL-DRF-23-0387

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Physique à Haute Intensité (PHI)

Saclay

Contact :

Henri VINCENTI

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Henri VINCENTI
CEA - DRF/IRAMIS/LIDyL/PHI

0169080376

Directeur de thèse :

Henri VINCENTI
CEA - DRF/IRAMIS/LIDyL/PHI

0169080376

Page perso : https://iramis.cea.fr/Pisp/henri.vincenti/

Labo : https://iramis.cea.fr/LIDYL/PHI/

Voir aussi : https://ecp-warpx.github.io/

Les lasers femtosecondes sont aujourd’hui les sources de lumière les plus intenses sur Terre, avec une puissance qui peut atteindre celle du rayonnement solaire sur une surface grande comme l'Australie mais qui peut être focalisée sur des taches ayant le diamètre d'un cheveu. Ces sources de radiation extrêmes sont un outil précieux pour l’étude de la matière dans des conditions exotiques, mais aussi comme "driver" de sources secondaires de particules ou de lumière compactes et ultra-brèves.



Malgré ces propriétés exceptionnelles, les lasers femtosecondes n'ont toujours pas l’intensité requise pour explorer de nouveaux régimes fondamentaux où l'interaction laser-matière ou laser-vide quantique devient dominée par des effets d'électrodynamique quantique (QED) en champ fort. Ces régimes QED se retrouvent par exemple autour de certains objets astrophysiques comme les trous noirs et les étoiles de neutrons. En outre, les lasers femtosecondes ont typiquement une longueur d’onde de ~ 1 micromètre et certaines applications d’intérêt technologique (e.g., la gravure de semiconducteurs) requièrent des longueurs d’onde bien plus petites, de l’ordre de la dizaine de nanomètres.



Pour manipuler les propriétés des lasers femtosecondes et franchir ces barrières, nous étudions des dispositifs optiques appelés “miroirs plasmas relativistes”, qui peuvent convertir une impulsion laser en rayonnement X-UV, tout en augmentant considérablement son intensité ("booster") par effet Doppler.



Ce projet de thèse multi-disciplinaire concerne l’optimisation du système physique 'miroir plasma' dans le but d'améliorer les propriétés des faisceaux lasers boostés et de permettre l'utilisation de ces lasers boostés pour les applications susmentionnées.



L’activité s'appuiera sur des simulations numériques de type Particle-In-Cell avec le code open-source ‘WarpX’ sur les derniers superordinateurs de classe exascale pour déterminer les paramètres optimaux pour la génération de faisceaux boostés. Une activité auxiliaire de développement du code est envisagée pour supporter les campagnes de simulation. Les simulations seront essentielles pour guider des expériences qui seront réalisées sur notre installation laser de classe 100 TW , UHI100, au contraste temporel maîtrisé, élément essentiel à la réalisation de ce type d’expériences puis ensuite  sur laser de classe PW (e.g. Apollon à l’École Polytechnique ou d’autres installations à l’international).



Le(a) doctorant(e) aura l'opportunité de participer aux activités d'une équipe dynamique avec de fortes collaborations nationales et internationales. Il/elle acquerra également les compétences nécessaires pour participer à des expériences d'interaction laser-plasma dans des installations d'envergure internationale. Enfin, il/elle acquerra les compétences nécessaires pour participer au développement d'un logiciel complexe écrit en C++ moderne et conçu pour utiliser efficacement les superordinateurs plus puissants au monde. L’activité de développement sera realisé en collaboration avec l’équipe guidée par le Dr. J.-L. Vay à LBNL (US).



Bibliographie:

> A.Myers et al. “Porting WarpX to GPU-accelerated platforms” Parallel Computing, 108, 102833, 2021

> L.Fedeli et al. “Probing Strong-Field QED with Doppler-Boosted Petawatt-Class Lasers” Phys. Rev. Lett. 127, 114801, 2020

> H.Vincenti “Achieving Extreme Light Intensities using Optically Curved Relativistic Plasma Mirrors” Phys. Rev. Lett. 123, 105001, 2019

> H Vincenti et a. “Optical properties of relativistic plasma mirrors” Nat. Comm. 5 : 3403, 2014
Plasmonique Terahertz semi/supra-conductrice

SL-DRF-23-0455

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Laboratoire des Solides Irradiés (LSI)

Laboratoire des Solides Irradiés (LSI)

Saclay

Contact :

Yannis Laplace

Luca PERFETTI

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Yannis Laplace
Ecole Polytechnique - Laboratoire des Solides Irradiés LSI - UMR 7642

0169334512

Directeur de thèse :

Luca PERFETTI
Ecole Polytechnique - Laboratoire des Solides Irradiés LSI - UMR 7642

01 69 35 81 42

Page perso : https://www.polytechnique.edu/annuaire/laplace-yannis

Labo : https://portail.polytechnique.edu/lsi/fr/recherche/nouveaux-etats-electroniques/terax-lab

Voir aussi : https://www.polytechnique.edu/annuaire/perfetti-luca

Le développement scientifique et technologique de la gamme Terahertz (THz), un domaine du spectre électromagnétique situé à l’interface entre les micro-ondes et la photonique infrarouge, est plus que jamais d’actualité et l’objet d’intenses recherches récemment. Le but de cette thèse sera de développer et d’étudier des systèmes plasmoniques, en premier lieu des résonateurs plasmoniques, fonctionnant aux fréquences THz, qui seront à la fois accordables, nonlinéaires et pouvant permettre la réalisation de couplage lumière-matière ultra-fort à ces fréquences. Contrairement à d’autres approches, le candidat réalisera cela à partir de matériaux présentant un réponse plasmonique intrinsèque aux fréquences THz, comme les supraconducteurs à haute température critique et les semiconducteurs dopés.
Spectroscopie attoseconde de molécules en phase gazeuse et liquide

SL-DRF-23-0366

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Attophysique (ATTO)

Saclay

Contact :

Hugo MARROUX

Pascal SALIERES

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Hugo MARROUX
CEA - DRF/IRAMIS/LIDyL/ATTO

0169081744

Directeur de thèse :

Pascal SALIERES
CEA - DRF/IRAMIS/LIDyL/ATTO

0169086339

Page perso : https://iramis.cea.fr/Pisp/pascal.salieres/

Labo : http://iramis.cea.fr/LIDYL/

Voir aussi : http://attolab.fr/

Résumé :

L’étudiant-e utilisera les techniques laser attoseconde pour étudier les dynamiques ultrarapides de molécules en phase liquide et gazeuse. La photoionisation attoseconde en couche interne sera utilisée pour étudier en temps réel : les dynamiques de diffusion/réarrangement/transfert d’électrons, ainsi que les effets de solvatation.



Sujet détaillé :

Ces dernières années, la génération d’impulsions sub-femtosecondes, dites attosecondes (1 as=10-18 s), a connu des progrès spectaculaires. Ces impulsions ultrabrèves ouvrent de nouvelles perspectives d’exploration de la matière à une échelle de temps jusqu’alors inaccessible. Leur génération repose sur la forte interaction non linéaire d’impulsions laser infrarouges (IR) brèves (~20 femtosecondes) et intenses avec des gaz atomiques ou moléculaires. On produit ainsi les harmoniques d’ordre élevé de la fréquence fondamentale, sur une large gamme spectrale (160-10 nm) couvrant l’extrême ultraviolet (UVX). Cette radiation de haute énergie est capable d’ioniser des électrons localisés dans les couches internes des molécules. Dans le domaine temporel, ce rayonnement cohérent se présente comme des impulsions d’une durée de ~100 attosecondes [1].

Avec ces impulsions attosecondes, il devient possible d’étudier les dynamiques les plus rapides dans la matière, celles associées aux électrons, qui se déroulent naturellement à cette échelle de temps. La spectroscopie attoseconde permet ainsi l’étude de processus fondamentaux tels que la photo-ionisation et s’intéresse aux questions telles que : Combien de temps faut-il pour arracher un électron à un atome ou une molécule ’ Et comment le nuage électronique se réarrange-t-il ’ Ces questions sont devenues des sujets « chauds » dans la communauté scientifique mais ont pour le moment été étudiées dans des systèmes isolés, en phase gazeuse [2,3]. Des technologies d’échantillonnage de pointe nous permettent maintenant d’étudier ces dynamiques électroniques dans un milieu solvaté où le comportement des électrons sur ces échelles de temps attoseconde est inconnu. Quels transferts d’énergies ou bien d’électrons s’opèrent en 10-18 secondes ’ Peut-on mesurer des effets de diffusion électronique dans un liquide ’ Ces questions sont un nouveau challenge pour notre domaine sur le plan expérimental et théorique.



L’objectif de la thèse est tout d’abord de mettre en œuvre les techniques attosecondes établies en phase gazeuse en phase liquide. Deux détections complémentaires seront utilisées, la détection de photoélectron et l’absorption transitoire. En combinant les informations obtenues par chaque technique, nous serons capables de mesurer la diffusion du photoélectron après sa création mais aussi le devenir de la molécule ionisée : réarrangements/transferts d’électrons, effets de solvatation.



Le travail expérimental comprendra le développement et la mise en œuvre d’un dispositif, installé sur le laser FAB100 de l’Equipement d’Excellence ATTOLab, permettant : i) la génération de rayonnement attoseconde ; ii) sa caractérisation par interférométrie quantique ; iii) son utilisation en spectroscopie de photoionisation et d’absorption. Les aspects théoriques seront également développés. L’étudiant-e sera formé-e en optique ultrarapide, physique atomique et moléculaire, chimie quantique, et acquerra une large maitrise des techniques de spectroscopie UVX et de particules chargées. Des connaissances en optique, optique non linéaire, physique atomique et moléculaire, sont une base requise.

Le travail de thèse pourra donner lieu à des campagnes d’expériences dans des laboratoires français et européens associés (Hambourg-DESY).



Références :

[1] Y. Mairesse, et al., Science 302, 1540 (2003)

[2] V. Gruson, et al., Science 354, 734 (2016)

[3] A. Autuori, et al., Science Advances 8, eabl7594 (2022)

Conversion de l'énergie thermoélectrique en ferrofluides pour un capteur de chaleur solaire hybride

SL-DRF-23-0399

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Sawako NAKAMAE

Date souhaitée pour le début de la thèse : 01-10-2021

Contact :

Sawako NAKAMAE
CEA - DRF/IRAMIS/SPEC/SPHYNX

0169087538

Directeur de thèse :

Sawako NAKAMAE
CEA - DRF/IRAMIS/SPEC/SPHYNX

0169087538

Page perso : http://iramis.cea.fr/spec/Phocea/Pisp/index.php?nom=sawako.nakamae

Labo : http://iramis.cea.fr/spec/SPHYNX/

Voir aussi : https://www.magenta-h2020.eu

Les matériaux thermoélectriques (TE) capables de convertir la chaleur en électricité sont considérés comme une solution possible pour récupérer la chaleur fatale provenant du flux de déchets industriels, de moteurs, d’appareils électroniques ménagers ou de la chaleur corporelle. Depuis plusieurs années, au sein du laboratoire SPHYNX nous explorons les effets thermoélectriques dans les nanofluides ioniques, où des nanoparticules chargées électriquement servent à la fois de porteurs de chaleur et d'électricité. Contrairement aux matériaux solides, plusieurs effets TE interdépendants se produisent dans ces fluides, en donnant des valeurs du coefficient thermoélectrique généralement supérieures d'un ordre de grandeur à celles des semiconducteurs solides. De plus, les liquides thermoélectriques sont constitués de matières premières abondantes, et ils font l'objet d'une attention particulière en tant que futurs matériaux TE peu coûteux et écologiques. Alors que les origines précises des phénomènes thermoélectriques dans ces fluides sont encore débattues, nos résultats expérimentaux indiquent que les natures physico-chimiques d’interface particule-liquide y jouent un rôle décisif.



L'objectif du projet de doctorat est double. Premièrement, nous étudierons les mécanismes thermodynamiques sous-jacents à la production du potentiel thermoélectrique dans les nanofluides par mesures systématiques du coefficient Seebeck et le courant électrique produits. Les résultats seront comparés à leur propriétés thermo-diffusives étudiées par ailleurs dans le cadre d'actions de collaboration. Deuxièmement, le projet vise à développer des dispositifs de capteurs solaires hybrides de niveau « preuve de concept », capables de co-générer de la chaleur et de l'électricité. Ce dernier fait partie d'un projet en cours, SolTE-Hybrid (financement PALM-Valorisation) qui a démarré en septembre 2020.



Le projet de recherche proposé est principalement expérimental, impliquant des mesures thermoélectriques, thermiques et électrochimiques ; la mise en place d'un système d'acquisition de données automatisé et l'analyse des données obtenues. Des notions de thermodynamique, de physique des fluides et de physique de l'ingénierie (des dispositifs), ainsi que des connaissances pratiques sur la manipulation des dispositifs de laboratoire sont souhaitées. Des connaissances de base en optique et en électrochimie sont un plus mais pas obligatoires. Pour les étudiants motivés, des simulations numériques utilisant des logiciels CFD commerciaux peuvent également être envisagées.
Nano-assemblages lipidiques à visée thérapeutique dans un milieu biomimétique : transformation et interactions

SL-DRF-23-0369

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Frédéric GOBEAUX

Fabienne TESTARD

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Frédéric GOBEAUX
CEA - DRF/IRAMIS/NIMBE/LIONS

01 69 08 55 21

Directeur de thèse :

Fabienne TESTARD
CEA - DRF/IRAMIS/NIMBE/LIONS

01 69 08 96 42

Page perso : https://iramis.cea.fr/nimbe/Phocea/Pisp/index.php?nom=frederic.gobeaux

Labo : https://iramis.cea.fr/Pisp/lions/index.html

Voir aussi : https://www.umr-cnrs8612.universite-paris-saclay.fr/presentation_pers.php?nom=lepetre

Donner une vision générale de la stabilité colloïdale de nanoparticules en milieu biologique reste difficile au regard de la complexité des milieux biologiques et de la diversité des nanoparticules en terme de distribution de taille, forme, nature de surface externe et nanostructuration. En particulier, le nombre d’études physico-chimiques sur des particules organiques "molles" obtenues par auto-assemblage de bioconjugués reste faible. Pour comprendre comment les caractéristiques physico-chimiques de nanoparticules "molles" orientent leurs interactions avec les protéines du sang, nous proposons en collaboration avec l’institut Galien d’étudier un cas concret où la nanostructuration et la charge de surface des nanoparticules donnent des résultats thérapeutiques différents (activité analgésique). L’objectif est d’étudier en détails comment des nanoparticules formées par auto-assemblages de bioconjugués interagissent avec un milieu biologique modèle, en prenant en compte aussi bien les principaux composants (albumine, hémoglobine et lipoprotéines) que le flux hydrodynamique inhérent à la circulation sanguine.
Surfaces antibacteriennes innovantes pour la décontamination

SL-DRF-23-0777

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Geraldine CARROT

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Geraldine CARROT
CEA - DRF/IRAMIS/NIMBE/LICSEN

01 69 08 41 47

Directeur de thèse :

Geraldine CARROT
CEA - DRF/IRAMIS/NIMBE/LICSEN

01 69 08 41 47

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=carrot

Labo : https://iramis.cea.fr/nimbe/LICSEN/

Pour lutter contre les maladies infectieuses, la conception de matériaux et de surfaces antimicrobiens prend de l'ampleur. Outre la pandémie actuelle de COVID-19 et ses conséquences directes sur d'autres maladies infectieuses, l'Organisation mondiale de la santé (OMS) s'inquiète d'une autre catastrophe sanitaire majeure qui pourrait survenir en raison des difficultés à lutter contre les infections dues aux bactéries multirésistantes (MDR). et champignons. Dans ce contexte, des matériaux et des surfaces antimicrobiens efficaces pourraient jouer un rôle clé pour empêcher la propagation de ces agents pathogènes.



L’objectif de ce projet de thèse est de développer des surfaces antibactériennes à base de polymères de type polyionènes piégeant les agents pathogènes. Ces surfaces greffées développées à IRAMIS (3 brevets) ont fait l’objet d’études approfondies physico-chimiques et biologiques, qui ont montré leur efficacité à la fois comme piège à bactéries (effet pro-adhésif) et antibactérien. L’effet "piège à bactéries" pourrait être exploité avantageusement pour nettoyer des surfaces contaminées ou pour sonder des endroits difficiles d’accès. Ce projet regroupera les compétences en chimie d’ IRAMIS (DRF) et en microbiologie/analyses de JOLIOT (DRF) pour identifier les meilleures formulations de polymères et greffages, et documenter les effets antibactériens sur des agents pathogènes (spores de Bacillus, formes végétatives de bactéries Gram + et Gram -).
Séparation de phases de polyélectrolytes : aspects fondamentaux et application aux membranes

SL-DRF-23-0742

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Patrick GUENOUN

Date souhaitée pour le début de la thèse : 01-11-2023

Contact :

Patrick GUENOUN
CEA - DRF/IRAMIS/NIMBE/LIONS

01-69-08-74-33

Directeur de thèse :

Patrick GUENOUN
CEA - DRF/IRAMIS/NIMBE/LIONS

01-69-08-74-33

Page perso : https://iramis.cea.fr/Pisp/patrick.guenoun/index.html

Labo : https://iramis.cea.fr/nimbe/lions/

Le projet est expérimental et s’intéresse à l'étude de nouvelles familles de polyélectrolytes (PE) en déterminant leurs diagrammes de phases en fonction des variations de température, de sel ajouté ou de pH. Cela se fera par voie optique (microscopie, diffusion) au CEA Saclay. Une fois les diagrammes établis, la séparation de phase (PS) des solutions de PE sera étudiée par microscopie confocale à fluorescence pour déterminer les lois de croissance et le comportement d'échelle des séparations. La séparation de phases est un processus dynamique qui sera initié par une trempe en température ou en concentration, suivie par l'acquisition de séries temporelles d'images ou de fonctions de corrélation. Elle mènera à la formation de structures spatiales qui seront utilisées pour aboutir à une géométrie poreuse interconnectée. Les résultats seront traduits en lignes directrices pour les procédures de fabrication de membranes qui seront appliquées à Montpellier (Institut Européen des Membranes) afin de fabriquer des membranes poreuses en polyimide de haute tenue mécanique et thermique. Un autre aspect du projet sera de formaliser ces résultats de manière théorique en définissant un modèle 1/ capable de rendre compte des diagrammes obtenus, 2/ permettant de compléter des modèles existant de champ de phase pour la séparation de phases de polymères neutres afin de décrire la séparation de PE.
Capture du CO2 atmosphérique avec des nanofluides

SL-DRF-23-0067

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Christophe FAJOLLES

David CARRIÈRE

Date souhaitée pour le début de la thèse : 01-10-2021

Contact :

Christophe FAJOLLES
CEA - DSM/IRAMIS/NIMBE/LIONS

01 69 08 99 60

Directeur de thèse :

David CARRIÈRE
CEA - DRF/IRAMIS/NIMBE/LIONS

0169085489

Page perso : http://iramis.cea.fr/Pisp/david.carriere/

Labo : http://iramis.cea.fr/nimbe/lions/

Voir aussi : https://iramis.cea.fr/Pisp/christophe.fajolles/

L'une des voies fortement encouragées par le GIEC (Groupe d'experts intergouvernemental sur l'évolution du climat) pour maîtriser le dérèglement climatique est la capture du CO2 par des amines liquides, suivie de la récupération du gaz et son stockage souterrain profond. Mais un problème essentiel rend le procédé actuellement inefficace: la récupération du CO2 doit se faire par chauffage et est trop énergivore.



Dans ce contexte, cette thèse étudiera comment l'ajout de nanoparticules améliore la récupération du CO2 des amines liquides. Ces "nanofluides" ont une efficacité reconnue, mais il y a peu d'indications sur la façon d'atteindre une composition appropriée, et aucun consensus sur le mécanisme qui faciliterait la libération du CO2 gazeux.



L'objectif de cette thèse est de proposer des lignes directrices rationnelles qui mèneront à la meilleure combinaison nanoparticule + amine liquide, remplaçant les approches actuelles d'essai-erreur. Il faudra donc étudier comment la surface des nanoparticules 1) active la réaction chimique de libération, et 2) facilite le processus physique de nucléation des bulles gazeuses.
Effet de la substitution sur les propriétés ferroélectriques et photo-catalytiques de nanoparticules de titanate de barium

SL-DRF-23-0743

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire d’étude des éléments légers (LEEL)

Saclay

Contact :

Yann LECONTE

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Yann LECONTE
CEA - DRF/IRAMIS/NIMBE/LEEL

0169086496

Directeur de thèse :

Yann LECONTE
CEA - DRF/IRAMIS/NIMBE/LEEL

0169086496

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=leconte

Labo : https://iramis.cea.fr/NIMBE/LEEL/

Dans le cadre de la transition énergétique, la production d’hydrogène à partir de l’énergie solaire apparait comme un moyen de stockage puis de production d’énergie extrêmement prometteur. La photoélectrolyse de l’eau, pour se développer à grande échelle, a besoin de matériaux à haut rendement catalytique. Parmi les candidats envisagés, les matériaux dérivés des titanates de barium apparaissent prometteurs car leurs propriétés ferro- et piezoélectriques pourraient augmenter leur effet photocatalytique.



Nous proposons donc dans ce sujet, mené en collaboration entre le LEEL du CEA et le SPMS de Centrale – Supelec, de synthétiser des nanoparticules de BaTiO3 par spray pyrolyse en flamme en opérant des substitutions sur Ba et O afin d’étudier l’effet de ces modifications sur les propriétés ferroélectriques du matériau. L’ajout d’inclusions de métaux nobles en surface des particules, susceptibles d’améliorer la catalyse, sera également réalisée lors de la synthèse de ces dernières. Enfin, des tests de photocatalyse et de piezocatalyse permettront d’établir les liens entre les phénomènes ferroélectriques et catalytiques dans cette famille de matériaux.
Hybrides nanodiamants/TiO2 pour la production d'hydrogène vert par photocatalyse

SL-DRF-23-0679

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Hugues GIRARD

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Hugues GIRARD
CEA - DRF/IRAMIS/NIMBE/LEDNA

0169084760

Directeur de thèse :

Hugues GIRARD
CEA - DRF/IRAMIS/NIMBE/LEDNA

0169084760

Page perso : https://iramis.cea.fr/nimbe/Phocea/Membres/Annuaire/index.php?uid=hgirard

Labo : https://iramis.cea.fr/nimbe/ledna/

Parmi les carburants solaires, le dihydrogène est particulièrement prometteur grâce à son pouvoir énergétique élevé (142 kJ/mol). Néanmoins, sa production par une filière décarbonnée reste un sujet d’étude, ainsi que les procédés de stockage et de transport associés.

Le sujet de thèse proposé vise à développer la synthèse d' hybrides ND/TiO2 pour la production de dihydrogène par dissociation photocatalytique de l’eau,, en suivant notamment deux stratégies : (i) par assemblage des nanoparticules en voie aqueuse, notamment via des phénomènes électrostatiques ou (ii) en incorporant des nanodiamants durant la synthèse de nanostructures de TiO2. Des traitements de recuit en post-synthèse seront aussi étudiés, afin d’optimiser l’interface ND/TiO2. Dans ce travail, différents types de nanodiamants seront considérés, différents soit par leur source (issus de détonation ou de broyage), leur forme (sphériques ou facettés), leur diamètre (5-100 nm) ou leur chimie de surface. De même, pour le TiO2, différentes structures (rutile ou anatase), qualités cristallines ou morphologies (nanoparticules ou nanotubes) seront étudiées, en utilisant des synthèses par voie hydrothermale et sol-gel. L’effet de pré-traitements sur TiO2 sera aussi abordé. Les matériaux hybrides ainsi formés seront caractérisés par un ensemble de spectroscopies (XPS, FIT, Raman) et microscopies (SEM, HRTEM, CryoTEM) disponibles dans les deux laboratoires. Les performances de ces matériaux pour la production de dihydrogène par dissociation de l’eau par photocatalyse sous irradiation visible et solaire seront finalement évaluées à l’ICPEES. Les cinétiques de production d’hydrogène seront déterminées ainsi que les rendements quantiques en fonction de la concentration de photocatalyseurs, de la nature et de la concentration de l’agent sacrificiel et de l’irradiance.

Mise en forme de nanotubes de carbone alignés comme nouveaux microporeux pour couche de diffusion de gaz des piles à combustible

SL-DRF-23-0046

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Mathieu PINAULT

Arnaud MORIN

Date souhaitée pour le début de la thèse : 01-12-2022

Contact :

Mathieu PINAULT
CEA - DRF/IRAMIS/NIMBE/LEDNA

01-69-08-91-87

Directeur de thèse :

Arnaud MORIN
CEA - DRT/DEHT

0438785986

Page perso : https://iramis.cea.fr/Pisp/mathieu.pinault/

Labo : https://iramis.cea.fr/nimbe/ledna/

Ce travail de thèse s’intéresse au développement d’une nouvelle structure de microporeux pour couche de diffusion de gaz de PEMFC. Le développement de nouveaux matériaux pour piles de type PEM est une nécessité pour améliorer la densité de puissance fournie, réduire le coût des matériaux et le prix du système. Les PEMFC souffrent de problématiques reliées à la distribution d’eau liquide à l’intérieur de la pile, et notamment dans ses couches poreuses. Le microporeux est une des couches poreuses dont le rôle est d’optimiser cette répartition d’eau. Développer une nouvelle structure de microporeux peut permettre d’apporter des informations supplémentaires sur les paramètres influant la gestion de l’eau dans la cellule, et également donner une voie d’amélioration des performances de la pile. . Dans le cadre du projet PEPR (Programme et Equipements Prioritaires de Recherche) H2 PEMFC95, les Départements CEA de l’IRAMIS (Saclay) et de l’Hydrogène pour le Transport (LITEN-DEHT Grenoble) vont collaborer sur l’élaboration de matériaux de GDL optimisés et innovants à base de nanotubes de carbone, plus adaptées aux conditions de fonctionnement définies. Les tapis de NTC alignés ont en effet démontré leur efficacité en tant que couche microporeuse [1]. Les performances sont au moins similaires à la meilleure couche de diffusion de gaz de l'état de la technique en fonction des conditions, et une amélioration jusqu'à 30% de la densité de puissance a pu être obtenue, sans aucun traitement hydrophobe. Pour ce sujet de thèse, nous proposons de poursuivre les développements de ces couches de diffusion intégrant des NTC pour leur intérêt en terme de stabilité vis-à-vis de l’oxydation et leur hydrophobicité en réalisant des couches microporeuses présentant une porosité variable. L’objectif de les substituer à la GDL tout en améliorant la compréhension sur son rôle et d’une manière générale sur les phénomènes de transport dans un cœur de PEMFC. Pour ce faire, le travail comporte deux volets. Un volet matériaux avec des aspects de fabrication et de caractérisation des propriétés fonctionnelles et un volet électrochimie avec des mesures en pile à combustible
Protection des métaux cuivreux du patrimoine par des traitements à base de sol-gel - compréhension des mécanismes physicochimiques de l'inhibition de la corrosion

SL-DRF-23-0416

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire archéomatériaux et prévision de l’altération (LAPA)

Saclay

Contact :

Laurent MUGHERLI

Delphine Neff

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Laurent MUGHERLI
CEA - Liste des pôles/Liste des départements/Liste des services/LEDNA

0169089427

Directeur de thèse :

Delphine Neff
CEA - DRF/IRAMIS/NIMBE/LAPA

01.69.08.33.40

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=lmugherl

Labo : https://iramis.cea.fr/nimbe/ledna/

Voir aussi : https://iramis.cea.fr/nimbe/lapa/

La preuve de concept de l’efficacité en protection des métaux cuivreux dans le contexte de la conservation du patrimoine par des revêtements sol-gels dopés en acide carboxylique a été montrée lors d’une première thèse conduite au sein d’une collaboration NIMBE LAPA/LEDNA. Afin d’optimiser la formulation de ce revêtement sur ces métaux comportant une Couche de Produits de Corrosion (CPC) de plusieurs dizaines de micromètres d’épaisseur qu’il est nécessaire de préserver il convient de développer une étude approfondie des mécanismes physico-chimiques de la protection. Dans ce nouveau projet de thèse une méthodologie de caractérisation multi-technique et multi-échelle sera mise en œuvre sur des échantillons de CPC anciennes ainsi que sur des échantillons modèles de CPC. D’une part, les paramètres de la formulation (précurseurs TMOS et/ou TEOS) et les conditions d’application seront ajustés pour privilégier une application au pinceau ou au spray. D’autre part, les mécanismes de la protection seront étudiés grâce à des mesures électrochimiques ainsi que lors d’expériences de remise en corrosion en milieux marqués (D2O/18O2, KBr en conditions immergées agressives). Le protocole analytique sera basé sur des analyses à l’échelle globale (viscosité, BET, porosimétrie mercure, ATG, DRX), à l’échelle micrométrique (MEB-EDS, spectrométrie Raman) ainsi qu’à l’échelle nanométrique (MET sur lames FIB) afin de comprendre les systèmes obtenus lors des traitements.
Étude de l'évolution de la chimie et de la cristallographie des ciments durables pendant leur carbonatation

SL-DRF-23-0407

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Mark LEVENSTEIN

Corinne CHEVALLARD

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Mark LEVENSTEIN
CEA - DRF/IRAMIS/NIMBE/LIONS

+33 (0) 1 69 08 57 34

Directeur de thèse :

Corinne CHEVALLARD
CEA - DRF/IRAMIS/NIMBE/LIONS

01-69-08-54-89

Page perso : https://www.researchgate.net/profile/Mark-Levenstein-3

Labo : https://iramis.cea.fr/Pisp/lions/index.html

Voir aussi : https://www.researchgate.net/profile/Stephane-Poyet/

Ce sujet de thèse vise à étudier de nouvelles formulations de liants à base de sous-produits industriels (comme les laitiers de hauts-fourneaux, les cendres volantes et/ou d’autres minéraux peu transformés) comme des alternatives plus durables aux ciments habituels (les ciments Portland). Ces formulations seront optimisées dans le but d’obtenir une prise et une montée en résistance liée à carbonatation (réaction avec le CO2 gazeux présente dans l’atmosphère) plutôt que par hydratation (réaction avec l’eau, i.e. dissolutions-précipitations). Le recours à la carbonatation comme moteur à la structuration du matériau constitue un atout capital dans une démarche de réduction des émissions des gaz à effet de serre car elle permet la capture et la séquestration efficace du CO2 dans une matrice minérale stable. Les mécanismes de carbonatation des différentes formulations considérées seront explicités en fonction des conditions environnementales (température, humidité relative, pression partielle en CO2) au moyen de techniques expérimentales complémentaires comme la microdiffraction des rayons X (DRX) et la microtomographie aux rayons X (µ-XCT). Nous développerons également des méthodes récemment introduites dans l'imagerie numérique du pH afin de comprendre l'évolution de l'environnement chimique au cours de sa maturation des matériaux. Les différentes formulations seront testées avec des échantillons de différentes tailles (depuis la microfluidique jusqu’à des dispositifs de carbonatation de grande taille) et sur différentes échelles de temps en utilisant des sources de rayons X de laboratoire jusqu'aux installations de rayonnement synchrotron.
Carbone support électroactif pour la fabrication de catalyseurs à faible chargement de platine

SL-DRF-23-0318

Domaine de recherche : Matériaux et applications
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Bruno JOUSSELME

Date souhaitée pour le début de la thèse : 01-10-2022

Contact :

Bruno JOUSSELME
CEA - DRF/IRAMIS/NIMBE/LICSEN

0169 08 91 91

Directeur de thèse :

Bruno JOUSSELME
CEA - DRF/IRAMIS/NIMBE/LICSEN

0169 08 91 91

Page perso : https://iramis.cea.fr/Pisp/bruno.jousselme/

Labo : https://iramis.cea.fr/nimbe/licsen/

L’utilisation à grande échelle des piles à combustible à membrane échangeuse de protons (PEMFCs) pour la motorisation des véhicules nécessite le développement de nouveaux catalyseurs. En effet, les coûts élevés des PEMFCs sont principalement liés à la nécessité d’utiliser une grande quantité d’un métal noble, le platine, comme catalyseur des réactions électrochimiques afin d’obtenir des performances suffisantes. Ce travail de thèse concerne donc la fabrication et l’optimisation de nouveaux catalyseurs n’ayant qu’une faible quantité de Platine supporté sur un matériau carboné présentant lui aussi une activité catalytique vis-à-vis de la réduction de l’oxygène. Ces carbones supports enrichis en azote et comportant un métal non noble associé à une infime quantité de Platine devraient conduire à terme à des matériaux peu couteux. L’objectif du travail de thèse est donc de synthétiser et d’optimiser à large échelle des supports carbonés catalytiques et de quantifier le nombre de site actifs pour la fabrication de catalyseurs à faible chargement de platine.
Mise au point d'implants intracrâniens bioactifs: du laboratoire à l'industrie

SL-DRF-23-0315

Domaine de recherche : Matériaux et applications
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Guy DENIAU

Date souhaitée pour le début de la thèse : 01-02-2023

Contact :

Guy DENIAU
CEA - DRF/IRAMIS/NIMBE/LICSEN

01 69 08 21 11

Directeur de thèse :

Guy DENIAU
CEA - DRF/IRAMIS/NIMBE/LICSEN

01 69 08 21 11

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=deniau

Labo : https://iramis.cea.fr/nimbe/licsen/

Voir aussi : https://lvts.fr/

Contexte: Ce projet fait suite à un travail soutenu par la Fondation pour la Recherche Médicale (2018-2022) ou nous avons montré la

pertinence de modifier la surface de coils de platine (implants intracrâniens permettant de traiter les anévrismes) afin d'accélérer la

cicatrisation anévrismale. Cela a été démontré in vivo grâce au greffage covalent d'un polysaccharide, le fucoïdane sur la surface des

coils.



Objectifs de la thèse

Les objectifs du projet de thèse sont les suivants :

1- Optimiser le recouvrement de coils permettant un développement dans des conditions GMP (Good Manufacturing Pratices) et adapter

la méthode à un procédé industriel.

2- Caractériser complètement le recouvrement en termes de densité, d’épaisseur et de régularité à l’aide des techniques

physicochimiques (ATG, DSC, angle de contact, analyse élémentaire) et d’imagerie optique (imagerie biphotonique, microscopie

électronique à balayage, AFM) et spectroscopique (EDS, XPS).

3- Valider les conditions retenues par implantation des coils modifiés dans un modèle anévrismale de lapin.

Partenaires: UMR NIMBE LICSEN, Société BALT, LVTS Inserm U1148 et XLIM UMR CNRS 7252, CHU Limoges.
Caractérisation in situ et en temps réel de nanomatériaux par spectroscopie de plasma

SL-DRF-23-0402

Domaine de recherche : Physique atomique et moléculaire
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Marc BRIANT

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Marc BRIANT
CEA - DRF/IRAMIS/NIMBE

01 69 08 53 05

Directeur de thèse :

Marc BRIANT
CEA - DRF/IRAMIS/NIMBE

01 69 08 53 05

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=mbriant

Labo : https://iramis.cea.fr/nimbe/ledna/

L'objectif de cette thèse est de développer un dispositif expérimental permettant de réaliser l'analyse élémentaire in situ et en temps réel de nanoparticules lors de leur synthèse (par pyrolyse laser ou pyrolyse par flamme). La spectrométrie d'émission optique de plasma induit par laser (Laser-Induced Breakdown Spectroscopy: LIBS) sera utilisée pour identifier les différents éléments présents et leur stœchiométrie.



Les expériences préliminaires menées au LEDNA ont montré la faisabilité d'un tel projet et en particulier l'acquisition d'un spectre LIBS d'une nanoparticule unique. Néanmoins le dispositif expérimental doit être développé et amélioré afin d'obtenir un meilleur rapport signal sur bruit, d'augmenter la limite de détection, de tenir compte des différents effets sur le spectre (effet de taille des nanoparticules, de composition ou de structure complexe), d'identifier et de quantifier automatiquement les éléments présents.



En parallèle, d'autres informations pourront être recherchées (via d'autres techniques optiques) comme la densité de nanoparticules, la distribution de taille ou de forme.
Moments angulaires généralisés en physique attoseconde : étude théorique et expérimentale

SL-DRF-23-0393

Domaine de recherche : Physique atomique et moléculaire
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Attophysique (ATTO)

Saclay

Contact :

Thierry Ruchon

Date souhaitée pour le début de la thèse : 01-09-2023

Contact :

Thierry Ruchon
CEA - DRF/IRAMIS/LIDyL/ATTO

0169087010

Directeur de thèse :

Thierry Ruchon
CEA - DRF/IRAMIS/LIDyL/ATTO

0169087010

Page perso : https://iramis.cea.fr/LIDYL/Pisp/thierry.ruchon/

Labo : https://iramis.cea.fr/LIDYL/ATTO/

Voir aussi : https://iramis.cea.fr/LIDYL/

La lumière dans l’extrême ultraviolet (XUV) constitue une sonde universelle de la matière, qu’elle se présente en phase diluée ou condensée : les photons associés à cette gamme spectrale portent une énergie de 10 à 100 eV, suffisante pour ioniser directement atomes, molécules ou objets solides. De grands instruments tels les synchrotrons ou les lasers à électrons libres (LEL) fonctionnent dans cette gamme spectrale et permettent d’étudier, tant du point de vue fondamental qu’appliqué, les interactions lumière-matière dans ce régime. Cependant, ces grands instruments n’offrent pas la résolution temporelle permettant d’atteindre les échelles de temps ultimes des interactions lumière-matière, situées dans la gamme attoseconde (1as=10-18s). Une alternative est offerte par le développement, ces dernières années, de sources XUV basées sur la génération d’harmoniques d’ordre élevé (HHG) d’un laser femtoseconde intense. Notre laboratoire a été pionnier pour le développement, le contrôle et la mise en forme de ces sources fournissant des impulsions XUV attosecondes.



Au cours de cette thèse, nous développerons des dispositifs spécifiques faisant porter à ces impulsions un moment angulaire, qu’il soit de spin ou orbital ou généralisé. Ceci ouvrira de nouvelles applications mettant en jeu des spectroscopies résolues en temps ignorées à ce jour. Cependant, l’accent sera mis, sur les aspects fondamentaux d’interaction lumière/matière dans le régime hautement non linéaire et ultra bref en présence de moment angulaire, en particulier les faisceaux présentant une topologie originale comme les rubans de Möbius de polarisation.



L’étudiant(e) acquerra une pratique de l’optique des lasers, en particulier femtoseconde, et des techniques de spectrométrie de particules chargées. Il (elle) étudiera également les processus de physique des champs forts sur lesquels se basent la génération d'harmonique élevées. Il/elle deviendra un(e) experte de la physique attoseconde. L’acquisition de techniques d’analyse approfondie, d’interfaçage d’expérience seront encouragées même si non indispensables.



Sujet détaillé à la page : http://iramis.cea.fr/LIDYL/Pisp/thierry.ruchon/
De la spectroscopie théorique aux propriétés des matériaux

SL-DRF-23-0447

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Laboratoire des Solides Irradiés (LSI)

Laboratoire des Solides Irradiés (LSI)

Saclay

Contact :

Francesco SOTTILE

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Francesco SOTTILE
Ecole Polytechnique - UMR 7642

0169334549

Directeur de thèse :

Francesco SOTTILE
Ecole Polytechnique - UMR 7642

0169334549

Page perso : https://etsf.polytechnique.fr/People/Francesco

Labo : https://etsf.polytechnique.fr

La conception théorique des matériaux est de plus en plus reconnue comme un moyen efficace de réduire le nombre d'expériences qui peuvent finalement conduire à la découverte de matériaux aux propriétés personnalisées. La spectroscopie, en sondant la réponse des matériaux aux perturbations externes, permet d'analyser les excitations élémentaires et, par conséquent, les propriétés des matériaux. Il existe de nombreux types de techniques expérimentales, chacune avec ses propres capacités, avantages et inconvénients, et avec sa contrepartie théorique plus ou moins efficace. Le but de cette thèse est de donner une vue unifiée des différentes spectroscopies, via le concept fondamental de l'écrantage électronique. A l'aide de développements théoriques et numériques dans le cadre de la théorie des fonctions de Green, nous prévoyons de décrire, analyser et prédire les propriétés optiques et électroniques d'une large gamme de matériaux, des systèmes modèles aux vanadates, des oxydes aux oxalates. Ce projet de thèse, bien que fortement basé sur des développements théoriques et numériques, a également un lien fort avec les expériences.
Boucles de courants dans les cuprates

SL-DRF-23-0075

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Laboratoire Léon Brillouin (LLB)

Groupe 3 Axes (G3A)

Saclay

Contact :

Philippe Bourges

Date souhaitée pour le début de la thèse : 01-09-2023

Contact :

Philippe Bourges
CEA - DRF/IRAMIS/LLB/G3A

0169086831

Directeur de thèse :

Philippe Bourges
CEA - DRF/IRAMIS/LLB/G3A

0169086831

Page perso : https://iramis.cea.fr/Pisp/113/philippe.bourges.html

Labo : https://www-llb.cea.fr/NFMQ/

Depuis une dizaine d'années, plusieurs techniques expérimentales ont fourni des preuves irréfutables en faveur d'un état de la matière nouveau à l’intérieur de la maille élémentaire dans l'état de pseudo-gap des supraconducteurs à haute temperature critique à base de cuivre (cuprates) et des iridates, et plus récemment dans les cuprates échelles à montants [1]. Cet état brise les symétries d'inversion et de renversement du temps, mais préserve l'invariance par translation du réseau. Toutes ces observations expérimentales semblent être la signature d'un état magnéto-électrique, qui a la forme d'un ordre de boucles courants microscopiques [2] ou d'un ordre quadrupolaire [3]. Les boucles de courants sont liés à des moments toroïdaux (ou anapoles), similaires à ceux discutés dans différents composés multiferroïques. Récemment, en utilisant des techniques de diffraction de neutrons polarisés, nous avons révélé de nouvelles corrélations magnétiques qui permettent de doubler ou de quadrupler la maille élémentaire magnétique [4]. Les moments magnétiques sont principalement orientés perpendiculairement aux couches de CuO2, comme prévu pour les boucles de courants. Ce nouveau magnétisme, associé au magnétisme précédemment rapporté, produit une texture magnétique cachée.



Afin de mieux comprendre la nature intrinsèque de ce magnétisme exotique, nous proposons d'utiliser la technique de diffraction des rayons X résonnants polarisés (RXD). L'analyse de la polarisation est un outil puissant car elle permet une identification sélective des termes anapole et quadrupole. En effet, bien qu'associés à des ordres multipolaires, les boucles de courants et l'état quadrupolaire impliquent des distributions électroniques et des origines microscopiques très distinctes. Alors qu'une boucle de courant est délocalisée sur plusieurs atomes, un quadrupôle est seulement localisé sur le cuivre [3]. En plus des mesures RXD, la diffraction des neutrons polarisés sera utilisée pour étudier le diagramme de phase de plusieurs matériaux d'oxydes de cuivre qui incluent des supraconducteurs à haute température (YBa2Cu3O7-d, HgBa2CuO4+d, (Sr,Ca)14Cu24O41,CuO, etc). Les expériences RXD seront principalement menées sur la ligne de faisceau I16 de la Diamond Light Source (Royaume-Uni) et sur les lignes de faisceau ID32 et XMaS de l'ESRF. La diffraction des neutrons à l'Institut Laue Langevin (ILL) Grenoble.



Pour réaliser ce programme de recherche, nous proposons un programme de doctorat au Laboratoire Léon Brillouin (LLB-Saclay) en étroite collaboration avec le Laboratoire de la Physique du Solide (LPS-Orsay), tous deux localisés à l'Université Paris-Saclay.



References

[1] P. Bourges, D. Bounoua, Y. Sidis, C. R. Phys. 22, 1–25 https://doi.org/10.5802/crphys.84 (2021).

[2] C. Varma, Phys. Rev. B 73, 155113 (2006); M. S. Scheurer and S. Sachdev, Phys. Rev. B 98, 235126 (2018). S. Sarkar et al., Phys. Rev. B 100, 214519 (2019).

[3] M. Fechner et al., Phys. Rev. B 93, 174419 (2016); S. W. Lovesey and D. D. Khalyavin, J. Phys. Condens. Matter 29, 215603 (2017).

[4] D. Bounoua et al, accepté dans Comms. Phys. (2022),, https://arxiv.org/abs/2111.00525
Comportement en corrosion sous contrainte de verre mesostructure par un processus de démixtion

SL-DRF-23-0356

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Laure CHOMAT

Cindy ROUNTREE

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Laure CHOMAT
CEA - DRF/IRAMIS/SPEC/SPHYNX

01.69.08.79.32

Directeur de thèse :

Cindy ROUNTREE
CEA - DRF/IRAMIS/SPEC/SPHYNX

+33 1 69 08 26 55

Page perso : https://iramis.cea.fr/Pisp/cindy.rountree/

Labo : https://iramis.cea.fr/spec/SPHYNX/

Voir aussi : https://iramis.cea.fr/spec/index.php

Le verre est un matériau largement utilisé du fait de ses nombreux avantages : transparence, dureté, faible dilatation thermique, température du point de fusion élevée, relative inertie chimique, etc... Il présente néanmoins une faiblesse majeure : sa fragilité. Des sollicitations relativement modérées peuvent amener sa rupture brutale, sans précurseur annonciateur. Le verre est également sensible au phénomène de corrosion sous contrainte : sous l’influence de certaines conditions environnementales (humidité relative, température, etc…), des sollicitations apparemment anodines (bien plus faibles que celles amenant sa rupture brutale) peuvent conduire à la propagation de fissures à faible vitesse comme observée lors de la fissuration lente des parebrises de voiture. Cette corrosion sous contrainte, dépend aussi de paramètres intrinsèques du verre : composition chimique, microstructure, etc...



Le phénomène de séparation de phase dans les verres conduit à une méso-structuration du matériau pouvant améliorer les propriétés mécaniques telles que la résistance à l’écrasement . Il est également à l’origine des vitrocéramiques, constitués de microcristaux dispersés dans une matrice vitreuse, développées en vue de tirer parti des avantages des deux constituants : céramique et verre. Leur emploi est actuellement répandu, par exemple pour des applications de thermométrie optique, des ustensiles de cuisine, des matériaux dentaires, etc… Cependant, le comportement en corrosion sous contrainte de ce type de matériau reste encore peu étudié.



L’objectif de cette thèse s’inscrit dans la compréhension du lien entre la méso-structure des vitrocéramiques et leur comportement en corrosion sous contraintes. Il s’agira dans un premier temps d’acquérir des données relatives à la rupture de verres démixés en utilisant un dispositif dédié où les conditions environnementales sont contrôlées. Plusieurs compositions de verres présentant une séparation de phase seront étudiées, et dans la mesure du possible, en association avec leur pendant non-démixé (même composition chimique mais recuit thermique différent). La vitesse de fissuration et sa variation avec la contrainte appliquée seront mesurés pour chaque échantillon afin d’obtenir les courbes caractéristiques de résistance à la corrosion sous contraintes. En parallèle, la composition et la méso-structure des échantillons seront étudiées en mettant en œuvre différentes techniques : AFM, SEM, Raman, etc. Une caractérisation post-mortem de la surface de rupture des échantillons sera également menée via de la microscopie à champ proche (AFM, …) et analysée avec différents outils statistiques (modélisation stochastique, analyse fractale).



Ce stage se déroulera au seins du laboratoire SPHYNX du Service de Physique de l’Etat Condensé qui est une unité mixte CEA / CNRS (UMR 3680 CEA-CNRS). Les chercheurs y étudient la physique de la matière condensée, de la physique la plus fondamentale aux applications industrielles. Le stagiaire/doctorant retenu aura l’opportunité de mettre en œuvre des méthodes avancées de caractérisation des matériaux et de leur surface, de l'échelle macroscopique à l'échelle nanométrique. Les approches s'appuieront sur des plateformes expérimentales et des outils théoriques développés en interne. Le candidat aura l’occasion de manipuler les outils théoriques et expérimentaux utilisés dans le domaine de la science des matériaux, de la mécanique et de la physique statistique. Enfin, le caractère à la fois très fondamental et apliqué de cette recherche permettra au candidat de trouver à l’issue de cette expérience des débouchés dans le monde académique (thèse) et dans l’industrie.

Conversion orbitale/charge dans des gaz bidimensionnels d’électrons

SL-DRF-23-0411

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Michel VIRET

Date souhaitée pour le début de la thèse : 01-09-2023

Contact :

Michel VIRET
CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 71 60

Directeur de thèse :

Michel VIRET
CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 71 60

Page perso : https://iramis.cea.fr/Pisp/michel.viret/

Labo : https://iramis.cea.fr/SPEC/LNO/

L’effet Rashba est bien connu dans la communauté des gaz bidimensionnels d'électrons, et surtout en spintronique où le couplage chiral en spin de la structure de bandes est utilisé pour inter-convertir spin et charge. Dans certains matériaux, il apparait que les effets orbitaux sont largement plus grands que ceux dus aux spins. Nous venons de démontrer que c’est effectivement le cas dans le système LaAlO3/SrTiO3. Il faut maintenant étudier l’effet de l’épaisseur de la barrière de LaAlO3 et des dépendances angulaires. Il est important aussi d'étudier ces phénomènes à l'échelle de la picoseconde ce qui est possible dans notre laboratoire en utilisant des lasers ultra-rapides pour produire des impulsions très courtes de spins purs. Pendant sa thèse, l'étudiant sélectionné réalisera des mesures à froid aux échelles de temps variant du DC (spin Seebeck) à la picoseconde (désaimantation ultra-rapide) sur des échantillons à l’état de l’art venant de l’université de Genève. D'autres échantillons pertinents pour la conversion orbital/charge seront étudiés comme le système Cu/CuO fait au laboratoire.
Création et utilisation d'une base de données de modèles pour le calcul ab initio des propriétés optiques des matériaux

SL-DRF-23-0443

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Laboratoire des Solides Irradiés (LSI)

Laboratoire des Solides Irradiés (LSI)

Saclay

Contact :

Lucia REINING

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Lucia REINING
CNRS - LSI/Laboratoire des Solides Irradiés

0169334553

Directeur de thèse :

Lucia REINING
CNRS - LSI/Laboratoire des Solides Irradiés

0169334553

Page perso : https://etsf.polytechnique.fr/People/Lucia

Labo : https://etsf.polytechnique.fr

Voir aussi : https://portail.polytechnique.edu/lsi/fr/recherche/spectroscopie-theorique

Ce projet vise une ré-utilisation astucieuse de données dans le calcul de spectres électroniques. Souvent, les calculs ab initio ne profitent pas des données produites, ou bien ils utilisent des bases de données de matériaux réels nécessitant une énorme quantité de données. Nous avons proposé une approche appelée “connector theory” pour surmonter ce problème. Elle consiste à calculer avec grande précision, mais une fois pour toutes, une propriété donnée (énergie totale, spectres,...) pour un système modèle en fonction de ses paramètres. Ces résultats sont sauvegardés et peuvent être utilisés pour déterminer la même propriété dans de nombreux matériaux réels. Ceci nécessite la connaissance d’un “connecteur”, une prescription pour choisir la bonne information dans la base de données modèles, selon le matériau réel et selon des paramètres spécifiques, par exemple, une fréquence ou un endroit particulier. Nous avons formulé la théorie exacte et proposé une stratégie d'approximation systématique des connecteurs. A ce point, il faut concevoir les connecteurs spécifiques pour chaque propriété d'intérêt.



Dans cette thèse, l’étudiant(e) optimisera un modèle et concevra un connecteur pour les propriétés optiques des matériaux de basse dimension. Elle/il établira la base de données modèles qui est nécessaire pour cette application, et la complétera avec des interpolations, par exemple avec du “machine learning”. Ceci permettra des calculs extrêmement frugaux des propriétés optiques.

Détection magnétique adaptative à Spin Orbit Torque

SL-DRF-23-0653

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Myriam PANNETIER-LECOEUR

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Myriam PANNETIER-LECOEUR
CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 74 10

Directeur de thèse :

Myriam PANNETIER-LECOEUR
CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 74 10

Page perso : https://iramis.cea.fr/spec/Phocea/Pisp/index.php?nom=myriam.pannetier-lecoeur

Labo : https://iramis.cea.fr/spec/LNO/

L'électronique de spin est une physique puissante basée non seulement sur la charge mais aussi sur le spin des électrons. Déjà largement utilisée pour les têtes de lecture des disques durs, elle a connu une mise en œuvre croissante pour la détection des champs magnétiques, en raison de sa sensibilité, de sa miniaturisation et de sa facilité d'intégration au CMOS. Néanmoins, les propriétés de ces capteurs sont jusqu’à présent fixées lors de la fabrication et ne peuvent être modifiées au cours de leur durée de vie. Cette thèse vise à étudier de nouveaux concepts de capteurs magnétiques, intégrant la spinorbitronique (exploitant le spin orbit torque) comme un degré de liberté supplémentaire pour la conception du capteur, permettant de changer ses caractéristiques telles que la direction ou la gamme de sensibilité, ou encore de réduire dynamiquement le bruit, en cours de vie du capteur, le rendant ainsi reconfigurable. Ce concept apportera une nouvelle génération de capteurs intelligents, capables d'être reconfigurés électriquement pendant leur durée de vie.



Sujet détaillé :

L'objectif de cette thèse est de développer des structures de magnétorésistance à effet tunnel (TMR) utilisant le spin orbit torque pour manipuler électriquement l’aimantation et ouvrir la voie à des capteurs magnétiques reconfigurables.

Les capteurs magnétiques permettent de mesurer à la fois le champ magnétique mais aussi des quantités associées, comme le courant ou encore la position d'un objet. Ils sont de plus en plus présents dans les objets technologiques, ainsi que dans les domaines automobile et médical.

L'électronique de spin, dont la démonstration expérimentale a été couronnée par le prix Nobel de physique en 2007 (A. Fert et P. Grünberg), a ouvert des voies d'amélioration importantes pour les capteurs magnétiques grâce à la sensibilité et à la miniaturisation des éléments de base.



Cependant, une limite actuelle vient du fait que le capteur est défini au moment de sa fabrication et que ses caractéristiques (telles que la gamme ou la direction de sensibilité...) sont fixées au départ pendant la fabrication. Grâce au phénomène de spin orbit torque (SOT), qui consiste à appliquer une force magnétique à travers un flux d'électrons polarisés en spin, il est possible d'implémenter dans un élément spintronique une fonction de manipulation de certaines des couches magnétiques, et ainsi d'imaginer un capteur qui puisse s'adapter au cours de son utilisation grâce à la reconfiguration de ses références.



Le projet de thèse consistera à développer des systèmes de magnéto-résistance tunnel (TMR) intégrant un niveau de SOT pour piloter la réponse du capteur, à fabriquer les dispositifs, à tester leurs performances et à les appliquer dans un environnement réaliste pour la détection de courant et pour de la magnétométrie. Cette thèse s'inscrira dans le cadre du projet STORM financé par l'ANR (démarré en décembre 2022), en collaboration avec UMPhy Thales et Crivasense Technologies. Elle comprendra le dépôt de matériaux, leur caractérisation en termes de performances SOT, puis la réalisation de dispositifs par des techniques de microfabrication, et des mesures de magnéto-transport pour évaluer la réponse des capteurs.

Influence d'une nano-antenne sur le taux de croisement intersystème d'une molécule unique

SL-DRF-23-0438

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Laboratoire d’Electronique et nanoPhotonique Organique (LEPO)

Saclay

Contact :

Simon VASSANT

Fabrice CHARRA

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Simon VASSANT
CEA - DRF/IRAMIS

+33 169 089 597

Directeur de thèse :

Fabrice CHARRA
CEA - DRF/IRAMIS

+33/169089722

Page perso : https://iramis.cea.fr/Pisp/simon.vassant/

Labo : https://iramis.cea.fr/spec/LEPO/

Dans le cadre du projet ANR JCJC PlasmonISC, nous proposons un sujet de thèse majoritairement expérimental en nano-photonique. L’objectif de la thèse est d’étudier l’influence d’une nano-antenne (plasmonique, magnétique ou diélectrique) sur le taux régissant la photophysique d'émission de fluorescence d'une molécule unique, avec un intérêt particulier pour le taux de croisement intersystème. Nous avons développé un banc optique dédié combinant microscopie optique et microscopie à force atomique, une procédure expérimentale, ainsi que les outils de traitement du signal, montrant de premiers résultats encourageants avec une pointe diélectrique. Nous souhaitons continuer d'explorer l'interaction molécule unique/nano-antenne avec d'autres type de pointes générant d'autres effets physiques. La possibilité d’influer de manière contrôlée sur le passage à l'état triplet est d’un grand intérêt pour les sources de photons uniques, et pour les diodes électroluminescentes organiques, ainsi qu'en chimie.
Les couches minces ferroélectriques HfO2: d'une compréhension fondamentale aux dispositifs optimisés à basse consommation d'énergie

SL-DRF-23-0332

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Laboratoire d’Etude des NanoStructures et Imagerie de Surface (LENSIS)

Saclay

Contact :

NiCK BARRETT

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

NiCK BARRETT
CEA - DRF/IRAMIS/SPEC/LENSIS

0169083272

Directeur de thèse :

NiCK BARRETT
CEA - DRF/IRAMIS/SPEC/LENSIS

0169083272

Page perso : https://iramis.cea.fr/Pisp/nick.barrett/

Labo : https://iramis.cea.fr/SPEC/LENSIS/

Voir aussi : https://www.lensislab.com/

La ferroélectricité dans les couches minces de HfO2 dans les conditions de contrainte et de température spécifiques a été découverte il y a dix ans, générant un fort intérêt dans la communauté de la recherche et de développement des technologies émergentes pour les mémoires non-volatiles.



Grâce à la compatibilité CMOS et à son potentiel de mise à l’échelle et d’intégration 3D, la ferroélectricité dans le HfO2 ne représente pas uniquement une percée par rapport aux dispositifs basés sur les matériaux ferroélectriques conventionnels comme les pérovskites, elle constitue une révolution d’un point de vue applicatif.



Par rapport aux technologies Flash, résistive ou changement de phase, les mémoires ferroélectriques sont intrinsèquement de basse consommation d’énergie : commuter la polarisation électrique qui encode l’information, nécessité trois ordres de grandeur moins d’énergie que les technologies concurrentes. La technologie ferroélectrique est également très peu cher d’u point de vue de l’intégration.

Cependant, élever la maturité technologique nécessite une compréhension de l’influence des défauts et de l’interface électrode/ferroélectrique sur la performance électrique.



Nous utiliserons la caractérisation avancée in operando pour tracer une voie pour l’optimisation des dispositifs grâce à l’ingénierie fondamentale des matériaux.
Microscopie magnétique locale par intégration de capteurs magnétorésistifs

SL-DRF-23-0423

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Aurélie Solignac

Myriam PANNETIER-LECOEUR

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Aurélie Solignac
CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 95 40

Directeur de thèse :

Myriam PANNETIER-LECOEUR
CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 74 10

Page perso : http://iramis.cea.fr/Pisp/aurelie.solignac/

Labo : http://iramis.cea.fr/spec/LNO/

Un microscope magnétique ultrasensible et quantitatif a été développé au Laboratoire de Nanomagnétisme et Oxydes en combinant un microscope sonde locale à balayage de type AFM (Atomic Force Microscope) et un capteur magnétique magnétorésistif (MR) intégré dans un bras de levier AFM. Durant cette thèse, le but est d’investiguer des applications innovantes de ce microscope en utilisant notamment une propriété spécifique des capteurs MR : leur large gamme de fréquence en détection allant du DC à plusieurs centaines de MHz voire le GHz. Ainsi les propriétés de susceptibilité magnétique de particules/matériaux magnétiques pourront être étudiées, notamment dans le cadre de l’utilisation des pétales magnétiques pour des applications de furtivité /absorption RF ou des rubans de nanocristallins pour des applications de conversion électriques. Une deuxième application visée est la magnonique ou l’utilisation des ondes de spin (plutôt que des charges) afin de transporter et traiter l’information avec un minimum de pertes d’énergie. Durant la thèse, les capteurs intégrés seront développés et caractérisés, le microscope et l’électronique de détection du capteur devront être adaptés aux mesures à haute fréquence. Un autre aspect de cette thèse sera à partir des cartographies de champs mesurés de pouvoir remonter aux propriétés magnétiques des matériaux étudiés.
Nouveaux grenats magnétocaloriques

SL-DRF-23-0333

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Laboratoire Léon Brillouin (LLB)

Groupe Diffraction Poudres (GDP)

Saclay

Contact :

Françoise DAMAY-ROWE

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Françoise DAMAY-ROWE
CNRS-UMR 12 - LLB - Laboratoire de Diffusion Neutronique

01 69 08 49 54

Directeur de thèse :

Françoise DAMAY-ROWE
CNRS-UMR 12 - LLB - Laboratoire de Diffusion Neutronique

01 69 08 49 54

Page perso : https://iramis.cea.fr/Pisp/francoise.damay/

Labo : https://iramis.cea.fr/llb/NFMQ/

Afin de remplacer l'hélium liquide de plus en plus rare, il est devenu indispensables de rechercher des réfrigérants alternatifs, pour, par exemple, refroidir les aimants supraconducteurs utilisés dans l'imagerie par résonance médicale. Les matériaux magnéto-caloriques, avec leur pouvoir de refroidissement entropique lorsqu'ils sont soumis à un champ magnétique, constituent une telle solution de remplacement. Les grenats à base de gadolinium développés récemment présentent des effets magnéto-caloriques parmi les plus importants ; cependant, le pouvoir de refroidissement de ces matériaux atteint son maximum en dessous de 2 K, température trop faible pour de nombreuses applications de l'hélium liquide.



L'objectif de ce projet de thèse est de trouver de nouveaux grenats de terres rares avec de meilleures performances magnéto-caloriques, par des substitutions adéquates sur les trois sites cationiques disponibles de la structure du grenat. L'originalité du projet est l'étude d'oxydes de grenat à haute entropie pour atteindre cet objectif. L'utilisation des techniques de diffusion neutronique sera un atout essentiel pour corréler les substitutions chimiques avec les changements d'anisotropie magnétique et les états fondamentaux dans un champ magnétique appliqué, pour une compréhension approfondie des paramètres clés contrôlant l'effet magnéto-calorique.
Réaction d’évolution de l’oxygène à l'interface entre un oxyde semiconducteur et un électrolyte aqueux dans une réaction de photoelectrolyse

SL-DRF-23-0751

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

Dana STANESCU

Yannick DAPPE

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Dana STANESCU
CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 75 48

Directeur de thèse :

Yannick DAPPE
CNRS - DRF/IRAMIS/SPEC/GMT

+33 (0)1 69 08 84 46

Page perso : https://iramis.cea.fr/Pisp/dana.stanescu/

Labo : https://iramis.cea.fr/spec/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=2977

L'objectif de cette thèse est de comprendre et de décrire les mécanismes sous-jacents à l'OER lors de la réaction de photoelectrolyse en réalisant une étude comparative des photoanodes a-Fe2O3 et BiVO4 modifiées par un co-catalyseur. Ce travail de thèse s'articulera autour de plusieurs axes : i) synthèse de photoanodes par des méthodes chimiques sur deux types de substrats (FTO et carbone vitreux) ; ii) caractérisation photoélectrochimique macroscopique : quantification du photocourant, mesure directe de l'hydrogène produit, spectroscopie de l’impédance photoélectrochimique ; iii) caractérisation par spectromicroscopies ex situ de rayons X (STXM et XPEEM utilisant le contraste NEXAFS) au synchrotron SOLEIL (ligne de lumière HERMES). Cette analyse fournira des informations directes sur la composition chimique et l'homogénéité, la morphologie et la structure électronique des photoanodes ; iv) calculs DFT utilisant des codes existants qui permettront de reproduire les caractéristiques NEXAFS à partir des données STXM et XPEEM. En outre, les calculs DFT vont aider à la prédiction de structures électroniques de matériaux d’intérêt par l’optimisation de structures atomiques et à la détermination de réactivité potentielle reliée à l’alignement des niveaux électroniques. L'étudiant sera accueilli au sein du laboratoire SPEC du CEA-Saclay pendant toute la durée de la thèse.
Satellites plasmoniques photo-induits

SL-DRF-23-0444

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Laboratoire des Solides Irradiés (LSI)

Laboratoire des Solides Irradiés (LSI)

Saclay

Contact :

Matteo GATTI

Lucia REINING

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Matteo GATTI
CNRS - LSI

0169334538

Directeur de thèse :

Lucia REINING
CNRS - LSI/Laboratoire des Solides Irradiés

0169334553

Page perso : https://etsf.polytechnique.fr/People/Matteo

Labo : https://etsf.polytechnique.fr

Voir aussi : https://portail.polytechnique.edu/lsi/fr

La spectroscopie de photoémission est l'un des moyens les plus directs d'accéder à la structure électronique des matériaux. Poursuivant l’ambition de contrôler la matière avec de la lumière et de créer de nouvelles fonctionnalités à la demande, l'avènement des sources laser à électrons libres ouvre de nouvelles perspectives passionnantes pour la spectroscopie des matériaux résolue dans le temps. Afin de transformer ces grands espoirs en réalité, une compréhension plus approfondie du changement photo-induit des propriétés des matériaux hors équilibre est la première priorité. Le projet de thèse entend relever ce défi en révélant les véritables signatures de la corrélation électronique dans les spectres de photoémission résolue dans le temps et en permettant l'utilisation complète de leurs informations physiques. Les pics principaux des spectres correspondent généralement à la structure de bandes des quasiparticules. Les répliques de ces pics, appelées satellites, sont entièrement dues aux interactions. Ils ne peuvent pas, par définition, être interprétés du point de vue d'une seule particule et, par conséquent, ils apportent des informations complémentaires à celles obtenues à partir de la structure de bandes. Ils reflètent la force de la corrélation électronique dans un matériau et présentent des échelles de longueur et de temps qui diffèrent de celles de la structure de bandes. Cependant, la partie satellite des spectres est en général beaucoup moins étudiée que les quasiparticules. La photo-excitation des porteurs peut être interprétée comme un processus de photo-dopage qui modifie les propriétés d'écrantage des matériaux. Nous estimons que la photo-excitation peut affecter les satellites encore plus fortement que les quasiparticules : les satellites pourraient être utilisés comme un outil de diagnostic informant sur l'effet de l'excitation laser avec une meilleure sensibilité que les quasiparticules.
Simulation et imagerie de matériaux antiferromagnétiques et magnéto-électriques chiraux

SL-DRF-23-0419

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Laboratoire Nano-Magnétisme et Oxydes (LNO)

Saclay

Contact :

jean-yves Chauleau

Michel VIRET

Date souhaitée pour le début de la thèse : 01-09-2023

Contact :

jean-yves Chauleau
CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 72 17

Directeur de thèse :

Michel VIRET
CEA - DRF/IRAMIS/SPEC/LNO

01 69 08 71 60

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=jchaulea

Labo : https://iramis.cea.fr/SPEC/LNO/

BiFeO3 est un matériau particulier car il comporte deux ordres couplés : une polarisation électrique et un ordre antiferromagnétique. Le couplage magnéto-électrique lui confère une configuration magnétique complexe, chirale, qu’il est possible de voir au synchrotron ou avec une sonde locale adaptée comme l’imagerie utilisant le centre NV du diamant. Au CEA, nous avons aussi développé un code de simulation d’une grande souplesse qui nous permet de prédire les propriétés magnétiques de structures de BiFeO3 contraintes, et même lithographiées et polarisées électriquement dans le but de réaliser des ‘skyrmions’ antiferromagnétiques. Le but de la thèse sera de simuler certaines structures déjà réalisées et d’en imaginer d’autres. Aussi, l'étudiant(e) utilisera un microscope à champ proche en cours de développement au laboratoire pour tenter de mesurer les configuration prédites dans des échantillons de BiFeO3 synthétisés à l'UMR CNRS/Thales.
Synthèse de nanoparticules de diamant à façon

SL-DRF-23-0347

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Hugues GIRARD

Jean-Charles ARNAULT

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Hugues GIRARD
CEA - DRF/IRAMIS/NIMBE/LEDNA

0169084760

Directeur de thèse :

Jean-Charles ARNAULT
CEA - DRF/IRAMIS/NIMBE/LEDNA

01 68 08 71 02

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=hgirard

Labo : https://iramis.cea.fr/NIMBE/LEDNA/

Les nanoparticules de diamant possèdent des propriétés chimiques, électroniques, thermiques et optiques exceptionnelles. Elles sont utilisées actuellement dans les domaines de la nano-médecine, de l’énergie, des technologies quantiques, des lubrifiants et des composites avancés [1-3]. Pour la majeure partie de ces applications, la qualité cristalline du cœur diamant est essentielle et les particules les plus étudiées sont issues de diamant massif broyé. Cependant, ces particules présentent une forte dispersion de taille, une anisotropie de forme et des concentrations d’impuretés variables. Ces aspects influent beaucoup sur leurs propriétés. Il y a donc une nécessité de mettre au point une méthode de synthèse de nanodiamants de haute qualité cristalline qui garantisse un contrôle plus fin de leur taille, de leur morphologie et de leur niveau d’impuretés.



Ce sujet de thèse se propose d’étudier la synthèse de nanodiamants par une approche bottom-up utilisant un template sacrificiel (billes ou fibres de silice) sur lequel des germes de diamant nanométriques seront fixés par interaction électrostatique. La croissance des particules de diamant sera réalisée en exposant ces objets à un plasma de croissance de dépôt chimique en phase vapeur activé par micro-ondes (MPCVD). Le dispositif de croissance de dépôt sur billes existe déjà au CEA NIMBE, il est actuellement utilisé pour la synthèse de cœur-coquilles de diamant [4]. Les paramètres de croissance seront ajustés pour sélectionner la taille, la forme et la concentration d’impuretés (azote, bore) dans les nanodiamants. Après croissance, les nanoparticules seront collectées après dissolution du template. Leur structure cristalline, leur morphologie et leur chimie de surface seront étudiées au CEA NIMBE par microscopie électronique à balayage, par diffraction des rayons X et par spectroscopies Raman, infrarouge et de photoélectrons (XPS). Une collaboration extérieure permettra de réaliser une analyse fine de la structure cristallographique et des défauts structuraux par microscopie électronique en transmission à haute résolution (HR-TEM).



Au cours de cette thèse, plusieurs types de nanodiamants seront synthétisés : tout d’abord des nanoparticules intrinsèques (sans dopage intentionnel) ensuite des nanoparticules dopées au bore. Ces deux types de particules seront ensuite modifiées en surface pour leur conférer une stabilité colloïdale. Leurs performances pour la photocatalyse seront mesurées en collaboration avec l’ICPEES de Strasbourg. Cette méthode de synthèse originale pourra aussi permettre de créer des centres colorés (azote-lacune NV ou silicium-lacune SiV) dans les nanoparticules de diamant pour exploiter leurs propriétés optiques (collaboration à initier).



Références :



[1] N. Nunn, M. Torelli, G. McGuire, O. Shenderova, Current Opinion in Solid State and Materials Science, 21 (2017) 1-9.

[2] Y. Wu, F. Jelezko, M. Plenio,T. Weil, Angew. Chem. Int. Ed. 55 (2016) 6586–6598.

[3] H. Wang, Y. Cui, Energy Applications 1 (2019) 13-18.

[4] A. Venerosy et al., Diam. Relat. Mater. 89 (2018) 122-131.
Detection d'un spin d'ion terre-rare par un qubit supraconducteur comme detecteur de photon micrononde.

SL-DRF-23-0422

Domaine de recherche : Physique mésoscopique
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Groupe Quantronique (GQ)

Saclay

Contact :

Emmanuel FLURIN

Date souhaitée pour le début de la thèse : 01-09-2023

Contact :

Emmanuel FLURIN
CEA - DRF/IRAMIS/SPEC/GQ

0622623862

Directeur de thèse :

Emmanuel FLURIN
CEA - DRF/IRAMIS/SPEC/GQ

0622623862

Page perso : https://iramis.cea.fr/Pisp/emmanuel.flurin/

Labo : https://iramis.cea.fr/spec/GQ/

Voir aussi : https://iramis.cea.fr/spec/Phocea/Vie_des_labos/Ast/ast.php?t=fait_marquant&id_ast=3409

Ce sujet de thèse s'inscrit dans le cadre d'un projet de recherche en informatique quantique visant à proposer de nouveaux bits quantiques robustes pouvant être interfacés avec les technologies quantiques supraconductrices. Nous explorons les impuretés piégées dans les solides comme des bits quantiques à très longue durée de vie.



Les défauts cristallins des matériaux peuvent être appréhendés comme des ions naturellement piégés dans un environnement cristallin inerte. En raison de leur immobilité et de leur isolement dans le réseau cristallin, les spins électroniques et nucléaires de ces ions présentent d'excellents temps de cohérence, allant de quelques secondes pour les électrons à quelques heures pour les noyaux. Ces systèmes sont donc d'excellents candidats pour le codage d'informations quantiques. Les circuits supraconducteurs constituent l'une des plateformes technologiques les plus abouties en matière de calcul quantique. Les bits quantiques sont codés dans des oscillateurs électromagnétiques artificiels, ils sont facilement contrôlables et intégrables. Cependant, leur temps de cohérence ne dépasse pas quelques centaines de microsecondes et leur fabrication manque de reproductibilité, c'est l'un des principaux obstacles au développement de processeurs de plus de 100 qubits.



Le groupe quantronique, pionnier des circuits supraconducteurs, est engagé dans un projet de recherche à long terme qui vise à interfacer les circuits avec le spin électronique et nucléaire d'un défaut cristallin unique et ainsi combiner la robustesse des éléments naturels avec l'intégrabilité des circuits artificiels. Nous avons récemment démontré pour la première fois la détection et la manipulation d'un spin électronique unique en utilisant un qubit supraconducteur transmon comme détecteur de photons micro-ondes uniques [1,2,3]. Dans cette expérience, le spin unique est transporté par un ion erbium dans un cristal de scheelite présentant un temps de cohérence record de trois millisecondes. Afin d'étendre le temps de cohérence du spin à la deuxième échelle de temps, sa pleine mesure naturelle, nous proposons ici de développer un coupleur supraconducteur accordable, qui peut coupler et découpler le détecteur du spin en quelques dizaines de nanosecondes. Sur la base de ce nouveau coupleur, nous proposons de détecter et de manipuler des spins nucléaires uniques au voisinage de l'ion pour lesquels la cohérence pourrait atteindre des heures.
Magneto-transport quantique dans des nanofils d'isolant topologique à géometrie façonnée

SL-DRF-23-0364

Domaine de recherche : Physique mésoscopique
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Groupe Mésocopie Modélisation et Thermoélectricité (GMT)

Saclay

Contact :

Cosimo Gorini

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Cosimo Gorini
CEA - DRF/IRAMIS/SPEC/GMT

+33 1 69 08 73 46

Directeur de thèse :

Cosimo Gorini
CEA - DRF/IRAMIS/SPEC/GMT

+33 1 69 08 73 46

Page perso : https://iramis.cea.fr/spec/Pisp/cosimo.gorini/

Labo : https://iramis.cea.fr/spec/GMT/

La physique mésoscopique étudie des systèmes composés de milliards de composantes, et néanmoins se portant comme des entités quantiques uniques. Les nanofils d’isolants topologiques 3D en sont un exemple. Ces derniers abritent sur leur surface des états électroniques à la Dirac, qui à faible température se propagent sous forme d’ondes quantiques cohérentes sur des échelles de plusieurs microns. Leur propriétés de transport sont donc régies par des phénomènes d’interférence quantique. Ces phénomènes sont déterminés et modulés par des champs magnétiques externes ou bien par leur courbure de Berry, comme démontré récemment dans une collaboration avec des expérimentateurs de l'Universitaet Regensburg (Allemagne).



Peu après nous avons également montré que la géométrie d’un nanofil peut dramatiquement changer ses propriétés de transport en présence des champs magnétiques. Un point crucial est que dans des nanofils façonnés les électrons de Dirac se propagent sur une surface courbe, et peuvent donc ressentir des champs gravitationnels effectifs. Ces derniers se manifestent sur des échelles comparables aux échelles quantiques de référence du système, comme dans des trous noirs – sauf qu’un nanofil est réalisable dans un labo, un trou noir pas tout à fait.



Parmi les nombreuses questions ouvertes dans ce domaine en plein croissance, deux en particulier sont centrales pour ce stage: (i) comment les états de surface sont-ils modifiés par la courbure’ (ii) Est-il possible d’identifier une signature dans le transport quantique dûe uniquement aux effets gravitationnels effectifs’ Pour y répondre des méthodes analytiques ainsi que numériques (simulations sur réseau) seront utilisées.
Controlling phase separation in active systems

SL-DRF-23-0341

Domaine de recherche : Physique théorique
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Cesare Nardini

Date souhaitée pour le début de la thèse : 01-09-2023

Contact :

Cesare Nardini
CEA - DRF/IRAMIS/SPEC/SPHYNX


Directeur de thèse :

Cesare Nardini
CEA - DRF/IRAMIS/SPEC/SPHYNX


Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=cnardini

Labo : https://iramis.cea.fr/SPEC/SPHYNX/

Voir aussi : https://scholar.google.com/citations?user=F5AitakAAAAJ&hl=en

Examples of active systems, formed of units that are able to extract energy from the environment and dissipate it to self-propel, are found everywhere in nature: flocks of birds, animal swarms, suspensions of bacteria or tissues are all biological active systems. Scientists are able to build synthetic active systems using catalytic colloidal particles or micro-robots.

Active systems have theoretically fascinating properties, a fact that drove a very intense research activity lately. Future applications may encompass the engineering self-assembling materials using active units, considered as a defining agenda in the community.



Large assemblies of active units display collective phenomena that are absent in equilibrium. One of the most ubiquitous is phase separation, where even repulsive but active particles phase separate into dense and dilute phases. In some cases, this phenomena resemble to liquid-vapor phase separation of standard fluids. Due to broken time-reversibility, however, active systems can show novel forms of phase separation, comprising a state where the liquid state comprises mesoscopic vapor bubbles (thus resembling to a boiling liquid), or active foams states, where thin liquid filaments are dispersed in the vapor.

Furthermore, in most experimental realization, active systems are `wet’, meaning that particles move in a fluid which itself can mediate interactions among particles, a feature whose consequences are so far little understood theoretically.



The main open theoretical question is how to control these novel states of matter in terms of microscopically tunable parameters. The main goal of this PhD is to fill this gap. This will require both analytical and computational work done on agent based models and continuous descriptions of active systems. If successful, the work will provide a guide for experimentalists to design novel self-assembling materials using active units. Given the ubiquity of phase separation in non-equilibrium contexts, we will further explore the relevance of these results to other out-of-equilibrium systems, such as biological tissues and granular materials.
Many-body physics of topological defects in active materials

SL-DRF-23-0342

Domaine de recherche : Physique théorique
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Cesare Nardini

Date souhaitée pour le début de la thèse : 01-09-2023

Contact :

Cesare Nardini
CEA - DRF/IRAMIS/SPEC/SPHYNX


Directeur de thèse :

Cesare Nardini
CEA - DRF/IRAMIS/SPEC/SPHYNX


Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=cnardini

Labo : https://iramis.cea.fr/SPEC/SPHYNX

Voir aussi : https://scholar.google.com/citations?user=F5AitakAAAAJ&hl=en

De nombreuses caractéristiques spatio-temporelles des matériaux biologiques et actifs, de la morphogenèse à la structure des assemblées denses de colloïdes autopropulsés, sont causées et contrôlées par des défauts topologiques. Il peut s'agir de défauts situés au-dessus de cristaux liquides, tels que des couches nématiques ou hexatiques, ou même au-dessus d'un solide cristallin. Les défauts peuvent servir de médiateur à la propagation anormale des contraintes, façonner la courbure des matériaux flexibles sous-jacents, ou même provoquer des transitions de phase entre des états où les défauts sont limités et d'autres où ils peuvent diffuser librement.



Ce projet de thèse vise à comprendre la physique multicorporelle des défauts topologiques dans les matériaux actifs en combinant des techniques analytiques et numériques, et à explorer leur pertinence pour les phénomènes collectifs dans les systèmes actifs et vivants.
Caractérisation au niveau cellulaire d'une thérapie anticancéreuse à base de vecteur doublement marqué 3H-14C, capture de cellules uniques dans des biopuces et beta détection

SL-DRF-23-0244

Domaine de recherche : Technologies pour la santé et l’environnement, dispositifs médicaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire (LIONS)

Saclay

Contact :

Florent Malloggi

laurent Devel

Date souhaitée pour le début de la thèse : 01-09-2023

Contact :

Florent Malloggi
CEA - DSM/IRAMIS/NIMBE/LIONS

+3316908 6328

Directeur de thèse :

laurent Devel
CEA - DRF/JOLIOT/DMTS/SIMOS/LBC

+33169089565

Page perso : https://iramis.cea.fr/nimbe/Pisp/florent.malloggi/

Labo : https://iramis.cea.fr/nimbe/index.php

Voir aussi : https://joliot.cea.fr/drf/joliot/recherche/DMTS/SIMOS

A partir d'un mélange de cellules isolées d'une tumeur animale ayant reçu une injection d'un médicament anticancéreux radiomarqué, nous proposons de quantifier la dose exacte de médicament accumulée dans chaque cellule de la tumeur. Une telle approche permettra de répondre à une question essentielle en pharmacologie : relier les effets observés (thérapeutiques et indésirables) à la dose de médicament délivrée, dans ce cas au niveau de la cellule unique (cellules cancéreuses), mais aussi de tous les autres types cellulaires présents dans le tissu tumoral. Nous nous appuierons sur nos récents développements en matière de radiomarquage d'anticorps et de molécules, de capture de cellules sur des dispositifs microfluidiques et d'imagerie beta.

 

Retour en haut