Laboratoire Léon Brillouin

UMR12 CEA-CNRS, Bât. 563 CEA Saclay

91191 Gif sur Yvette Cedex, France

+33-169085241 llb-sec@cea.fr

Let's scatter neutrons

Özge Azeri, Dennis Schönfeld, Bin Dai, Uwe Keiderling, Laurence Noirez and Michael Gradzielski

Block copolymers synthesized via Atom Transfer Radical Polymerization from alkyl acrylate and t-butyl acrylate and the subsequent hydrolysis of the t-butyl acrylate to acrylic acid were systematically varied with respect to their hydrophobic part by the variation in the alkyl chain length and the degree of polymerisation in this block. Depending on the architecture of the hydrophobic part, they had a more or less pronounced tendency to form copolymer micelles in an aqueous solution. They were employed for the preparation of IPECs by mixing the copolymer aggregates with the polycations polydiallyldimethylammonium chloride (PDADMAC) or q-chit. The IPEC structure as a function of the composition was investigated by Static Light and Small Angle Neutron Scattering. For weakly-associated block copolymers (short alkyl chain), complexation with polycation led to the formation of globular complexes, while already existing micelles (long alkyl chain) grew further in mass. In general, aggregates became larger upon the addition of further polycation, but this growth was much more pronounced for PDADMAC compared to q-chit, thereby leading to the formation of clusters of aggregates. Accordingly, the structure of such IPECs with a hydrophobic block depended largely on the type of complexing polyelectrolyte, which allowed for controlling the structural organisation via the molecular architecture of the two oppositely charged polyelectrolytes.

https://doi.org/10.3390/polym15092204

Michal Swierczewski, Alexis Chenneviere, Lay-Theng Lee, Plinio Maroni, Thomas Bürgi

Langmuir-Blodgett (LB) technique allows the deposition of gold nanoclusters (atomically precise nanoparticles below 2 nm in diameter) onto solid substrates with an unprecedented degree of control and high transfer ratios. Nanoclusters are expected to follow the crinkle folding mechanism, which promotes the formation of trilayers but kinetically disfavors the formation of the fourth layer. LB films of gold nanoclusters stabilized by thiolated ligand, Au38(SC2H4Ph)24, were prepared at a range of surface pressures in the bilayer/trilayer regime and their internal structure was analyzed with X-ray Reflectivity (XRR) and Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS). Bimodal atomic force microscopy (AFM) imaging was used to quantify the elastic modulus, which can be correlated with the topography at the same point on the surface. Nanocluster bilayers and trilayers exhibited the elastic moduli of ca. 1.2 GPa and 0.9 GPa respectively. Films transferred in the 20-25 mN/m surface pressure regime displayed a particular propensity to form highly vertically organized trilayers. Further compression resulted in disorganization of the layers. Crucially, the use of two cantilevers of contrasting stiffness for bimodal AFM measurements has demonstrated a new approach to quantify the mechanical properties of ultrathin films without the use of deconvolution algorithms to remove the substrate contribution.

https://doi.org/10.1016/j.jcis.2022.10.081

Tiago Outerelo Corvo, Antoine Jourdain, Shona O’Brien, Frédéric Restagno, Eric Drockenmuller, and Alexis Chennevière

Poly(ionic liquid)s (PILs), similar to their ionic liquid (IL) analogues, present a nanostructure arising from local interactions. The influence of this nanostructure on the macromolecular conformation of polymer chains is investigated for the first time by means of an extensive use of small-angle neutron scattering on a series of poly(1-vinyl-3-alkylimidazolium)s with varying alkyl side-chain length and counter-anion, both in bulk and in dilute solutions. Radii of gyration are found to increase with the side-chain length in solution as a consequence of crowding interactions between neighboring monomers. In bulk, however, a nonmonotonic evolution of the radius of gyration reflects a change in chain flexibility and a potential screening of electrostatic interactions. Additionally, at a smaller scale, SANS provides an experimental estimation of both the chain diameter and the correlation length between neighboring chains, comparison of which unveils clear evidence of interdigitation of the alkyl side chains. These structural features bring precious insights into the understanding of the dynamic properties of PILs.

https://doi.org/10.1021/acs.macromol.2c00290

Emil A. Klahn, Andreas M. Thiel, Rasmus B. Degn, Iurii Kibalin, Arsen Gukassov, Claire Wilson, Angelos B. Canaj, Mark Murrie and Jacob Overgaard

We present the magnetic anisotropy of two isostructural pentagonal-bipyramidal complexes, [Ln(H2O)5(HMPA)2]I3·2HMPA (HMPA = hexamethylphosphoramide, Ln = Dy, Ho). Using ac magnetic susceptibility measurements, we find magnetic relaxation barriers of 600 K and 270 K for the Dy- and Ho-compounds, respectively. This difference is supported by polarized neutron diffraction (PND) measured at 5 K and 1 T which provides the first experimental evidence that the transverse elements in the magnetic anisotropy of the Ho-analogue are significant, whereas the Dy-analogue has a near-axial magnetic anisotropy with vanishing transverse contributions. The coordination geometries of the two complexes are highly similar, and we attribute the loss of strong magnetic axiality as expressed in the atomic susceptibility tensors from PND, as well as the smaller relaxation barrier in the Ho-complex compared to the Dy-complex, to the less favorable interaction of the pentagonal bipyramidal crystal field with the characteristics of the Ho(III) 4f-charge distribution.

https://doi.org/10.1039/d1dt01959g

Dalila Bounoua, Lucile Mangin-Thro, Jaehong Jeong, Romuald Saint-Martin, Loreynne Pinsard-Gaudart, Yvan Sidis & Philippe Bourges, Communications Physics 3, (2020) 123.

New phases with broken discrete Ising symmetries are uncovered in quantum materials with strong electronic correlations. The two-leg ladder cuprate Sr14−xCaxCu24O41 hosts a very rich phase diagram where, upon hole doping, the system exhibits a spin liquid state ending to an intriguing ordered magnetic state at larger Ca content.

Using polarized neutron diffraction, we report here the existence of short range magnetism in this material for two Ca contents, whose origin cannot be ascribed to Cu spins. This magnetism develops exclusively within the two-leg ladders with a diffraction pattern at forbidden Bragg scattering, which is the hallmark of loop current-like magnetism breaking both time-reversal and parity symmetries.

Our discovery shows local discrete symmetry breaking in a one dimensional spin liquid system as theoretically predicted. It further suggests that a loop current-like phase could trigger the long range magnetic order reported at larger doping in two-leg ladder cuprates.

https://doi.org/10.1038/s42005-020-0388-1.

K. Beauvois, V. Simonet, S. Petit, J. Robert, F. Bourdarot, M. Gospodinov, A.A. Mukhin, R. Ballou, V. Skumryev, and E. Ressouche

The research field of magnetic frustration is dominated by triangle-based lattices but exotic phenomena can also be observed in pentagonal networks. A peculiar noncollinear magnetic order is indeed known to be stabilized in Bi2Fe4O9 materializing a Cairo pentagonal lattice. We present the spin wave excitations in the magnetically ordered state, obtained by inelastic neutron scattering. They reveal an unconventional excited state related to local precession of pairs of spins. The magnetic excitations are then modeled to determine the superexchange interactions for which the frustration is indeed at the origin of the spin arrangement. This analysis unveils a hierarchy in the interactions, leading to a paramagnetic state (close to the Néel temperature) constituted of strongly coupled dimers separated by much less correlated spins. This produces two types of response to an applied magnetic field associated with the two nonequivalent Fe sites, as observed in the magnetization distributions obtained using polarized neutrons.

https://doi.org/10.1103/PhysRevLett.124.127202

A. C. Ferreira, S. Paofai, A. Létoublon, J. Ollivier, S. Raymond, B. Hehlen, B. Rufflé, S. Cordier, C. Katan, J. Even & P. Bourges
 

Hybrid organolead perovskites (HOP) have started to establish themselves in the field of photovoltaics, mainly due to their great optoelectronic properties and steadily improving solar cell efficiency. Study of the lattice dynamics is key in understanding the electron-phonon interactions at play, responsible for such properties. Here, we investigate, via neutron and Raman spectroscopies, the optical phonon spectrum of four different HOP single crystals: MAPbBr3, FAPbBr3, MAPbI3, and α-FAPbI3. Low temperature spectra reveal weakly dispersive optical phonons, at energies as low as 2-5 meV, which seem to be the origin of the limit of the charge carriers mobilities in these materials. The temperature dependence of our neutron spectra shows as well a significant anharmonic behaviour, resulting in optical phonon overdamping at temperatures as low as 80 K, questionning the validity of the quasi-particle picture for the low energy optical modes at room temperature where the solar cells operate.

https://www.nature.com/articles/s42005-020-0313-7

M. Ruminy, S. Guitteny, J. Robert, L.-P. Regnault, M. Boehm, P. Steffens, H. Mutka, J. Ollivier, U. Stuhr, J. S. White, B. Roessli, L. Bovo, C. Decorse, M. K. Haas, R. J. Cava, I. Mirebeau, M. Kenzelmann, S. Petit, and T. Fennell

Tb2Ti2O7 presents an ongoing conundrum in the study of rare-earth pyrochlores. Despite the expectation that it should be the prototypical unfrustrated noncollinear Ising antiferromagnet on the pyrochlore lattice, it presents a puzzling correlated state that persists to the lowest temperatures. Effects which can reintroduce frustration or fluctuations are therefore sought, and quadrupolar operators have been implicated. One consequence of strong quadrupolar effects is the possible coupling of magnetic and lattice degrees of freedom, and it has previously been shown that a hybrid magnetoelastic mode with both magnetic and phononic character is formed in Tb2Ti2O7 by the interaction of a crystal field excitation with a transverse-acoustic phonon. Here, using polarized and unpolarized inelastic neutron scattering, we present a detailed characterization of the magnetic and phononic branches of this magnetoelastic mode, particularly with respect to their composition, the anisotropy of any magnetic fluctuations, and also the temperature dependence of the different types of fluctuation that are involved. We also examine the dispersion relations of the exciton branches that develop from the crystal field excitation in the same temperature regime that the coupled mode appears, and find three quasidispersionless branches where four are expected, each with a distinctive structure factor indicating that they are nonetheless cooperative excitations. We interpret the overall structure of the spectrum as containing four branches, one hybridized with the phonons and gaining a strong dispersion, and three remaining dispersionless.

https ://doi.org/10.1103/PhysRevB.99.224431

Béatrice Gillon, Albert Hammerschmied, Arsen Gukasov, Alain Cousson, Thomas Cauchy, Eliseo Ruiz, John A. Schlueter, Jamie L. Manson

We report neutron‐diffraction investigations of the quasi‐2D MnII(dca)2(pym)(H2O) (pym = N2C4H4) compound, where high‐spin MnII ions are bridged by dicyanamide anions, [N(CN)2] (herein abbreviated dca). Inside the layers, Mn2+ ions are connected by single or double dca bridges. The magnetic phase diagram was established by neutron diffraction on a single crystal. In the low‐field phase, the MnII ions are antiferromagnetically ordered in the layers, with moments nearly parallel to the c axis, and the layers are antiferromagnetically coupled. The spin‐flop phase corresponds to ferromagnetic coupling between the antiferromagnetic layers, in which the MnII moments are nearly perpendicular to the c axis. The induced spin‐density distribution in the paramagnetic phase, determined by polarized neutron diffraction, visualizes the superexchange pathways through the dca ligands within the layers and through H bonding between neighboring layers. The theoretical spin density obtained by bidimensional periodic DFT calculations is compared with the experimental results. Furthermore, quantum Monte Carlo simulations have been performed to compare the DFT results with experimental susceptibility measurements.

https://doi.org/10.1002/ejic.201700971

S. Petit, F. Moussa, M. Hennion et S. Pailhès (DRECAM/LLB CEA-Saclay)
L. Pinsard-Godard, Laboratoire de Chimie du Solide, Paris XI
A. Ivanov, ILL, BP 156 F-38042 Grenoble

Multi-ferroïcs are exceptional materials whose fundamental state is both magnetic and ferro-electric [1]. Moreover, in such materials, magnetism and ferroelectricity maintains close links: as for example the manganese oxide YMnO3 [2], can see its magnetization modified by the action of an electric field, or its electric polarization by the action of a magnetic field (magnetoelectric effect). Muli-ferroïcity is a complex problem in physics of condensed matter; it also represents an important stake for the applications, and for example for “technologies for the information and health” developed at the CEA (development of new concepts of memorizing the information or spin electronics).

The last research on these materials tends to show that the coupling between magnetism and ferro-electricity occurs via important deformations of the crystal lattice. It is known for example that in the case of the compound YMnO3, the transition (TN = 72K) towards the magnetic phase (and thus multi-ferroïc) is the seat of magnetostrictive effects that reveals the strong coupling between atomic displacements, magnetic ferroelectricity and moments.

 

Retour en haut