-
Domain, Specialties : Radiochemistry
Keywords: gas handling; electron irradiation; microfabrication; gas analysis ; instrumentationResearch Unit : NIMBE / LIONS
Summary
The use of ionizing radiation has been proposed to be a low impact treatment of gaz pollutant, both from an energetic and environmental point of view. This master thesis investigates the effects of ionizing radiation (electron beams) on various gas compositions. The project examines decomposition mechanisms of pollutant gases under controlled irradiation conditions, in an electron microscope. Experimental work involves irradiation cell and gas line development, dose quantification and optimization of the effect of the reactor material.
Full description
Human activities, in particular industrial processing, are responsible for significant gas pollution, which has harmful effects on the ecosystem and is causing climate change. The main polluting gases are SOx, NOx, and volatile organic compounds, which mostly originates from the extraction and processing of oil and coal. In order to mitigate this pollution, numerous physical and chemical techniques have been developed, to either separate or transform pollutants: methods such as water absorption, solid absorption, or membrane separation. However, these different methods often involve significant energy consumption, either to ensure the effectiveness of the treatment or to regenerate the sorbent material, and can lead to secondary pollution through the production of solid or liquid waste.
In this context, the use of ionizing radiation has been proposed to be a low impact treatment of gas pollutants. Exposure of matter to ionizing radiation generates the formation of free radicals, which are highly reactive species that participate in a cascade of chemical reactions and can ultimately alter the composition of the irradiated matter. These radiolytic phenomena, which can be problematic when affecting biological organisms in an uncontrolled manner, can conversely be exploited in gas treatment if used in a controlled way. The use of ionizing radiation in the mitigation of gas pollution has been considered for about 20 years, but is now attracting growing interest due to our ability to develop less demanding radiation sources.
This master thesis investigates the effects of ionizing radiation (electron beams) on various gas compositions. The project examines decomposition mechanisms of pollutant gases under controlled irradiation conditions, in an electron microscope. Experimental work will involve irradiation cell and gas line development, electron dose quantification and optimization of the effect of the reactor material. Gas composition after irradiation will be characterized, either online by residual gas analysis (RGA) directly after irradiation, or ex situ using the various equipment available on the SUITABL platform of the LIONS laboratory.
Location
CEA Saclay, (91) Essonne, France
Internship conditions
- Internship duration: 6 months
- Level of study: Bac+5
- Training: Master 2
- Continuation in PhD thesis: No
- Application deadline: 30 novembre 2025
Experimental skills
Language : English
Useful methods and technics: Electron microscopy, gas handling, microfabrication/microfluidics, gas analysis (RGA, µ-GC).
Instrumental and experimental skills, as well as high-quality reporting are required.Computer languages and software: Standard softwares – Word, Excel.
Links
- Web site of the laboratory: NIMBE/LIONS
- Personal web page of the supervisors:
Supervisor
Jean-Philippe RENAULT ; Corinne CHEVALLARD
Phone: +33 1 69 08 15 50 ; +33 1 69 08 54 89
Email: ;Head of the laboratory NIMBE / LIONS
Antoine THILL; ; Tél. : +33 1 69 08 99 82
November 30 2025February 2 20266 monthCEA Saclay, (91) Essonne, France -
Domain, topic: Chemistry
Keywords: Health, analytical chemistry, mass spectrometry, disease biomarkersResearch Unit: NIMBE / LEDNA
Development of an oligosaccharide purification method for glycomic analysis of biological samples
Subject
Mise en place d’une méthode de purification d’oligosaccharides pour l’analyse glycomique d’échantillons biologiques
Detailed subject
Mots-clés : Santé, chimie analytique, spectrométrie de masse, biomarqueurs de maladies.
Durée : 6 mois
Début souhaité : Février / Mars 2026
Lieu : CEA Saclay (DRF/IRAMIS/NIMBE/LEDNA)Au sein du CEA Paris-Saclay, le Laboratoire ÉDifices NAnométriques (LEDNA) concentre ses recherches sur la création de matériaux nanométriques, avec des applications allant de la catalyse et du stockage d’énergie à la bio-analyse.
Research project
Le LEDNA a récemment développé des dispositifs miniaturisés intégrant des monolithes à porosités hiérarchisées. En collaboration avec le Laboratoire Innovations en spectrométrie de Masse pour la Santé (LI-MS), l’application des HPM dans les protocoles de purification des glycanes, N-liés ou libres, a démontré un fort potentiel pour simplifier et accélérer l’analyse glycomique. Cependant, l’emploi de ce dispositif dans un contexte hospitalier impose une facilité d’utilisation et des protocoles expérimentaux robustes et validés.
Objective
Dans ce cadre, le(la) candidat(e) sera chargé(e) d’optimiser et valider la méthode de purification des glycanes (N-liés ou libres) par extraction en phase solide (SPE) intégrée dans des dispositifs miniaturisés permettant de travailler avec de faibles volumes d’échantillons. Les conditions d’analyse par spectrométrie de masse (MALDI-TOF-MS) des glycanes ainsi purifiés seront également optimisées et validées.
Main tasks
- Formation au protocole d’analyse glycomique :
- purification des glycanes (initialement N-liés ou libres) par extraction en phase solide (SPE),
- analyse par spectrométrie de masse (MALDI-ToF-MS).
- Conception de plans d’expériences pour déterminer les conditions optimales du protocole.
- Évaluation de la méthode sur divers échantillons biologiques (lait maternel, plasma humain)
- Essais en conditions réelles à partir d’échantillons de patients.
Profil du/de la candidat(e)
Étudiant issu de formation de niveau Master 2 ou école d’ingénieur avec une spécialisation en chimie analytique, biochimie ou sciences pharmaceutiques. Un goût pour le développement analytique serait un atout.
Contacts :
- Marc MALEVAL,
- Gabriel MANSOUR,
Les candidatures doivent être adressées par mail aux responsables du projet et doivent comporter une lettre de motivation et un CV.
Location
CEA Saclay, (91) Essonne, France
Internship conditions
- Durée du stage : 6 mois
- Niveau d’étude requis : Bac+5
- Formation : Master 2
- Poursuite possible en thèse : Oui
- Date limite de candidature : 16 janvier 2026
Experimental skills
Langue : Anglais
Méthodes, techniques : MALDI-TOF-MS, Extraction en Phase Solide
Links
- Web site of the research Unit: NIMBE/LEDNA
- Personal web page of the supervisor: Marc Maleval
Internship supervisor
Marc Maleval
Tél. : 01 69 08 49 33
Email :
October 8 2025October 9 20256 monthFrance -
Domain, topic: CHEMISTRY
Keywords: Solid-phase extraction, instrumentation, microextraction mass spectrometryResearch Unit: NIMBE / LEDNA
Subject
Development of a miniaturized system for automated solid-phase extraction
Detailed subject
Durée : 5-6 mois
Début souhaité : Février / Mars 2026
Lieu : CEA Saclay (DRF/IRAMIS/NIMBE/LEDNA)
Basé au CEA Saclay, le Laboratoire des EDifices Nanométriques (LEDNA) est axé sur la recherche fondamentale en nanosciences, son expertise porte sur le développement bottom-up de méthodes de synthèse et d’élaboration de nano-objets ou de matériaux nanostructurés originaux et ce, dans le but de développer des applications à fort impact sociétal dans les domaines de l’énergie, de l’environnement, de la santé et des matériaux composites fonctionnels.Projet de recherche :
Au sein du LEDNA, des dispositifs miniaturisés intégrant des matériaux poreux ont été développés pour l’enrichissement d’analytes par Extraction sur Phase Solide (SPE). Néanmoins, les systèmes actuellement employés pour la manipulation des fluides au sein du dispositif sont peu compatibles avec des formats miniaturisés et une automatisation, ce qui limite intrinsèquement la simplification et la rapidité d’exécution des protocoles SPE.
Objectif :
Dans ce contexte, le stage proposé a pour objectif de développer un système de contrôle fluidique pour des dispositifs miniaturisés. Le/La candidat(e) participera en lien avec un doctorant à la conception et l’assemblage d’un système de contrôle fluidique, à son expérimentation et optimisation et à son évaluation dans des protocoles SPE.
Location
CEA Saclay, (91) Essonne, France
Internship conditions
- Internship duration: 6 months
- Level of study: Bac+5
- Training: Master 2
- Continuation in PhD thesis: Yes
- Application deadline: January 2026, 16th
Experimental skills
Language: English
The candidate, a student from an engineering school or Master’s degree program with a specialization in physical chemistry or analytical chemistry, must demonstrate good communication skills, be able to work in a team, and appreciate instrumental and methodological development.
LINKS
- Web site of the research Unit: NIMBE/LEDNA
- Personal web page of the supervisor: Marc Maleval
Responsable du stage
Marc Maleval
Tél. : 01 69 08 49 33
Email :
January 16 2026February 2 20266 monthCEA Saclay, (91) Essonne, France -
Domain, Specialties: Chimie des matériaux
Keywords: Traitement de données, spectroscopie, patrimoineUnit: NIMBE/LAPA
Summary
L’objectif de ce stage est de collecter sur des mêmes zones d’échantillon des cartographies à trois longueurs d’onde 473, 532 et 785 nm. Les jeux de données collectés seront traités à l’aide de méthodes chimiométriques de fusion de données dites “multiblocs”. Des approches impliquant la chimiométrie ou l’intelligence artificielle peuvent être mises en œuvre pour optimiser les résultats.
Full description
Dans le cadre de la protection des métaux du patrimoine, la recherche de solutions efficaces et durables pour lutter contre la corrosion atmosphérique, en extérieur ou en contexte muséal, est un enjeu de première importance. Les métaux cuivreux du patrimoine sont recouverts d’une couche de produits de corrosion qui fait partie intégrante de l’œuvre et qui convient d’être protégée. Les traitements de protection du patrimoine sont donc appliqués directement sur la couche de produits de corrosion.
Au sein du NIMBE-LAPA, des produits à base de sol-gel dopés en inhibiteur de corrosion non toxiques pour l’environnement (acides carboxyliques) sont développés et appliqués sur des objets cuivreux historiques représentatifs car corrodés [1]. La couche de produits de corrosion formée sur ces objets a une épaisseur de quelques dizaines de micromètres, et est constituée de phases minérales de type cuprite et brochantite. La sol dopé, appliqué à la surface pénètre dans les porosités de la couche, se gélifie en libérant les acides carboxyliques qui vont précipiter pour former un carboxylate de cuivre hydrophobe. Les interactions entre les phases minérales de la couche et les composés du traitement de protection sont complexes et se produisent à l’échelle micrométrique.
Pour bien comprendre l’effet de ce traitement il est nécessaire d’effectuer des analyses de la distribution des différentes phases à cette échelle. Pour produire une image de la distribution de ces phases dans l’épaisseur de la couche, la spectroscopie Raman est une technique performante. Cependant l’ensemble de ces phases a des réponses différentes selon la longueur du laser mise en œuvre. Les phases minérales ont un bon rendement de diffusion Raman dans les longueurs d’onde du bleu au vert alors que les composés organiques, qui fluorescent, présentent des spectres plus lumineux dans le rouge et proche infrarouge.
L’objectif de ce stage est de collecter sur des mêmes zones d’échantillons traités de larges cartographies aux longueurs d’onde 473, 532 et 785 nm (plusieurs centaines de micromètres en X et Y, avec une résolution de quelques micromètres). Les jeux de données collectés seront traités à l’aide de méthodes chimiométriques de fusion de données dites “multiblocs”. Ces méthodes permettent de combiner efficacement les informations issues des 3 sources laser (représentant trois blocs distincts), en exploitant les relations entre elles afin obtenir une analyse plus complète et précise des échantillons. L’analyse simultanée des 3 blocs offre une meilleure interprétation des phénomènes complexes en tirant parti de la complémentarité des données tout en compensant les limitations spécifiques à chaque bloc individuel [2].
Pour garantir l’efficacité de ces méthodes, une étape de prétraitement des données est indispensable. Ce prétraitement inclut notamment la réduction du bruit, la correction des effets de fluorescence, etc… Cette étape est cruciale pour améliorer la qualité des données, maximisant ainsi l’efficacité des méthodes multiblocs. Des approches impliquant la chimiométrie ou l’intelligence artificielle peuvent être mises en œuvre pour optimiser les résultats.
[1] S. Lob, D. Neff, T.-H. Tran-Thi, M.C. Richter, C. Rivron, Hydrophobic coating using sustainable sol-gel process doped with carboxylic acids to protect heritage copper artefacts, Prog. Org. Coatings. 186 (2024) 108035.[2] F. Ammari, L. Bassel, C. Ferrier, D. Lacanette, R. Chapoulie, B. Bousquet. Multi-block analysis coupled to laser-induced breakdown spectroscopy for sorting geological materials from caves. Talanta 159 (2016) 287-291.
Location
CEA Saclay, (91) Essonne, France
Internship conditions
- Internship duration: 6 months
- Level of study: Bac+5
- Training: Master 2
- Continuation in PhD thesis: No
- Application deadline: January 2026, 16th
Experimental skills
Langue : Anglais
Méthods, Techniques:
- Spectroscopie Raman
- Chimiométrie
- Intelligence artificielle
Langages informatiques et logiciels :
- Python
Links
- Page web du laboratoire : NIMBE/LAPA
- Page personnelle de Faten AMMARI, responsable du stage
Internship Supervisor
Faten AMMARI
Tél. : 01.69.08.49.74
Email :Responsable
Delphine NEFF
Tél. : 01.69.08.33.40
January 16 2026February 2 20266 monthCEA Saclay, (91) Essonne, France -
Domain, Specialties : Materials chemistry
Keywords: CO2 capture, Nanomaterials, Artificial Intelligence, Small-Angle X-ray scatteringResearch Unit : NIMBE / LIONS
Summary
This internship explores the discovery of new nanostructured oxides for CO2 capture using an approach combining robotic synthesis and artificial intelligence. The project aims to validate this innovative methodology while identifying materials with improved performance.
Full description
The automation of chemical synthesis assisted by artificial intelligence opens new prospects for accelerated discovery of functional materials. However, the validity of these approaches compared to conventional methods remains to be established, particularly for the synthesis of nanostructured oxides intended for CO2 capture and sequestration.
The internship addresses two complementary scientific questions:- Methodological validation: Determine whether robotic synthesis produces materials equivalent to those obtained by conventional routes, or whether automation generates specific synthesis pathways with distinct properties
- Parameter space exploration: Systematically explore the influence of multiple parameters (oxide types, nanostructuring agents, injection protocols) to identify materials exceeding current CO2 capture performance
The intern will implement an experimental protocol combining:
- Solution-based syntheses, both automated (Opentrons Flex robot) and manual for comparison
- Structural characterization by small-angle X-ray scattering (SAXS, laboratory and synchrotron)
- Adsorption property measurements (BET, CO2 capture/release) in collaboration with ENSTA
- Programming for robot control and data analysis
This high-throughput approach will enable exploration of a parameter space inaccessible by conventional methods.
Experimental skills developed:
- Oxide synthesis in solution (conventional and robotic methods)
- Advanced characterization techniques (SAXS, physisorption, gas adsorption)
- Use of automated equipment and associated programming
Methodological skills developed:
- High-throughput experiment design
- Critical analysis of complex datasets
- Rigorous scientific validation approach
The internship also offers the opportunity to work with advanced research equipment (synchrotron) and develop expertise at the interface between materials chemistry and computational methods.
The internship will take place within a 4-person team working on this topic, in a laboratory of approximately 30 researchers. The intern will have access to the following equipment:
- Opentrons Flex synthesis robot
- Laboratory X-ray scattering and synchrotron beamtime
- Chemistry laboratory for synthesis and preparations
- Gas characterization platform (CO2 capture/release, BET)
Location
CEA Saclay, (91) Essonne, France
Internship conditions
- Internship duration: 6 months
- Level of study: Bac+5
- Training: Master 2
- Continuation in PhD thesis: Yes
- Application deadline: 2 février 2026
Experimental skills
Candidate profile: Master’s degree (M2) in materials science, solid-state chemistry, physical chemistry, or related disciplines.
Knowledge of oxide synthesis and physicochemical characterization is desired. An interest in programming represents a significant asset to fully exploit the capabilities of the robotic approach. The project will particularly suit candidates interested in innovative methodological approaches in materials science and in issues related to the energy transition.
Language : English
Links
- Laboratory website : https://iramis.cea.fr/nimbe/lions/
- Supervisor website: https://www.linkedin.com/in/david-carriere-cea/
Supervisor personal web page: https://iramis.cea.fr/en/nimbe/lions/pisp/david-carriere-2/
Supervisor
David Carrière
Phone: +33 1 69 08 54 89
Email :Head of the laboratory NIMBE / LIONS
Antoine Thill
Phone: +33 1 69 08 99 82
November 16 2025February 2 20266 monthCEA Saclay, (91) Essonne, France -
Domain, Specialties : Organic chemistry
Keywords: catalysis, synthetic methodologyResearch Unit : NIMBE / LCMCE
Summary
Faced with the depletion of fossil resources, this internship explores an alternative: using bio-based alkyl esters as electrophiles in cross-coupling reactions (Heck type), replacing polluting organic halides. The objective is to develop catalytic methods using abundant metals such as Fe/Co in photo- or thermocatalysis via tandem catalysis to activate the C–O bonds of esters. The project will build on the laboratory’s work in ester activation and preliminary results. This is an opportunity to contribute to circular chemistry, applicable to the pharmaceutical, agrochemical, and materials industries.
Full description
Context and Subject of the internship
The easy access to energy and carbon-based raw materials offered by the fossil feedstock allowed for the rapid growth of our society. Nevertheless, the expected depletion of fossil resources and climate change require a switch to a more sustainable model. Bio-based feedstock is a promising carbon source to substitute petrochemicals, but requires a drastic shift from the current model. While the current paradigm relies on the production of energy and high-value molecules through oxidation steps, a model based on Carbon Circular Economy, i.e., the transformation of CO2 and biomass feedstock that are already highly oxidized materials, demands the development of new methodologies for reduction, deoxygenation, and the direct use of oxygenated bonds to access functionalized and useful organic molecules.
In organic chemistry, cross-coupling reactions represent one of the major tools to create C–C bonds. However, they are still based mainly on the use of organic halides as electrophiles. In this project, the Master student will demonstrate that readily available and abundant alkyl esters can serve as electrophilic coupling partners in cross-coupling reactions with alkenes. Esters can indeed be directly biosourced or easily synthesized from alkyl carboxylic acids and alcohols, thereby diminishing the environmental impact of the carbon-carbon bond formation.
Objectives and Methodology
The main objective of the project will be the development of catalytic Heck-type cross-coupling reactions, under both thermal and photo-activation, catalyzed by non-noble metals (Fe, Co…). To activate alkyl esters, we envisage the use of tandem catalysis, where two catalysts will work in synergy to perform the reaction. The master project will draw on ongoing research in our laboratory on the reactivity of esters,1 C–O bond activations,2 and preliminary unpublished results.
Funding is available to continue this project with a doctoral thesis starting in fall 2026.
Location
CEA Saclay, (91) Essonne, France
Internship conditions
- Internship duration: 6 months
- Level of study: Bac+5
- Training: Master 2
- Continuation in PhD thesis: Yes
- Application deadline: 2 février 2026
Experimental skills
Language : English
Useful methods and technics:
The master student will develop his/her skills in catalysis, organic and organometallic synthesis, working under inert atmosphere (Schlenk lines, gloveboxes), as well as in the analysis of chemical compounds (NMR, GC-MS, IR, X-Ray). The student will also have access to modern optimization methods for catalytic systems, such as highthrouput experimentation (HTE) and DFT computations, and be trained in these techniques if he/she so wishes.Computer languages and software: N/A
Links
Site web du laboratoire : https://iramis.cea.fr/en/nimbe/lcmce/
Personal web page of supervisor:
Supervisor
Lucile Anthore-Dalion
Phone: +33 1 69 08 91 59
Email :Head of the laboratory NIMBE / LCMCE
Phone:
January 30 2026February 2 20266 monthCEA Saclay, (91) Essonne, France -
Domain, Specialties : Physical chemistry
Keywords: energy transition, low-carbon cement and concrete, SAXS, microfluidics, automationResearch Unit : NIMBE / LIONS
Summary
This project aims to adapt a cement microreactor, recently developed for in situ analysis of carbonation curing by XRD, so that it is compatible with the DIADEM FastNano automated SAXS platform. The goal is to better understand the simultaneous evolution of cement structure and porosity during the early stages of curing, a key factor for CO₂ capture and mechanical properties. The intern will contribute to the technical development of the microreactor as well as to the implementation of scripts for automated SAXS data collection and processing.
Full description
The production of ordinary Portland cement (OPC) clinker accounts for up to 8% of global CO2 emissions. Approximately 40% of this CO2 comes from the energy expended by heating the raw limestone and clays needed to produce the clinker, while the remaining 60% is released from the carbonates trapped within the limestone. Unfortunately, only a small fraction of this released CO2 is re-captured when cements are hardened through standard hydration processes. To reduce net CO2 emissions, a growing number of researchers and start-up companies (e.g., CarbonCure, Fortera) are working to cure cements through a combination of hydration and carbonation to re-capture released CO2. However, the carbonation of cements is a poorly understood phenomenon that can proceed through complex multi-step pathways.
Due to its density, hardness, and opacity, cement setting processes are extraordinarily difficult to study. To overcome this challenge, our lab recently developed a cement “microreactor” that enables real-time analysis of cement curing (Figure) and used it to study the evolving structure of cements using X-ray diffraction (XRD). The goal of this internship is to adapt the microreactor for use on the new DIADEM FastNano automated small-angle X-ray scattering (SAXS) platform. In addition to obtaining structural information by XRD, SAXS will enable us to uncover the evolving porosity of cements during early curing stages, which is crucial to CO2 transport and mechanical strength. The intern will help us to develop microreactor hardware for performing in situ SAXS analysis and accompanying scripts for the automated collection and treatment of SAXS data.Location
CEA Saclay, (91) Essonne, France
Internship conditions
- Internship duration: 6 months
- Level of study: Bac+5
- Training: Master 2
- Continuation in PhD thesis: Yes
- Application deadline: 2 février 2026
Experimental skills
Language : English
Useful methods and technics:
SAXS/WAXS, XRD, 3D printing, computer-aided designComputer languages and software:
Python, pySAXS
January 30 2026February 2 20266 monthCEA Saclay, (91) Essonne, France -
Domain, Specialties : CHEMISTRY
Keywords: Synthesis, batteriesResearch Unit: NIMBE / LEDNA
Summary
The integration of a reference electrode into a battery allows the electrochemical potential of a given electrode to be measured without affecting the battery’s performance. This potential measurement provides insight into the battery’s aging mechanisms, thereby enabling its performance to be optimized. The aim of this Master’s 2 research project is to synthesize electrode materials that can be used in Na-ion batteries.
Full description
Due to the growing demand for mobile energy storage, particularly in the automotive sector, research is focusing both on new battery technologies offering new prospects in terms of storage capacity and safety, and on diagnostic measures to detect battery aging mechanisms. In this context, it is particularly interesting to develop reference electrode materials for Na-ion batteries.
The LEDNA team at NIMBE is devoted to s synthese different types of nanomaterials to address societal challenges in the energy, environment, and health sectors. As part of its research activities, the laboratory is developing several synthesis methods for obtaining customized nanoparticles (control of the chemical composition, size, and morphology of the nanoparticles). As part of this project, a state-of-the-art analysis will be carried out to determine the relevant materials for the application. These will be synthesized using various processes such as microwave-assisted solvothermal synthesis in air or under an inert atmosphere.
The synthesized materials will be finely characterized using conventional techniques such as powder X-ray diffraction (crystallographic structure) and SEM analysis (particle size and morphology). Cyclic voltammetry measurements will complete this panel to study the electrochemical properties of these materials. The materials with the best properties will be used by the project partners as the active material for the production of reference electrodes and tested electrochemically.
This project is being carried out in collaboration with several partners with complementary expertise, particularly in electrochemical cell instrumentation and post-mortem battery characterization (CEA/LITEN in Grenoble). Meetings between the various partners will take place during the internship.
References:
[1] L. Baggetto, et al., J. Phys. Chem. C, 118 (2014), pp. 7856-7864
[2] L. Baggetto et al., Electrochem. Commun. 2013, 34, 41– 44
[3] Y. Zhu, et al., Nanoscale, 5 (2013), pp. 780-787
[4] Z. Jian, et al. Electrochem. Commun., 14 (2012) 86-89.
[5] X. Zhang, et al. Nanoscale, 2019, 11, 2556.
[6] T. Akçay, et al., ACS Applied Energy Materials 2021 4 (11), 12688-12695Location
CEA-Saclay, France
Internship conditions
- Internship duration: 6 months
- Level of study: Bac+5
- Training: Master 2
- Continuation in PhD thesis: No
- Application deadline: 5 janvier 2026
Experimental skills
Language : English
Useful methods and technics:
Inorganic synthesis (by microwave, sol-gel, combustion), XRD, SEM, IR, BET, electrochemistryLinks
- Web site of the laboratory: https://iramis.cea.fr/en/nimbe/ledna/
- Web page of supervisor Suzy Surblé
Supervisor
Suzy SURBLE
Phone: 01 69 08 69 16
Email :Head of the laboratory NIMBE / LEDNA
Suzy SURBLE
Phone: 01 69 08 69 16
January 9 2026February 2 20266 monthFrance -
Domain, Specialties : Chemisry
Keywords: Polymer chemistry, plastic waste valorizationResearch Unit : NIMBE / LCMCE
Summary
R&D Internship on an innovative chemical route for upcycling nylon waste
Full description
Polyamides, in particular nylon 6 and nylon 6/6, are widely used as fibers or engineering plastics in various application sectors (textile, automotive, construction, etc.). Despite the development of reuse methods to extend the lifespan of products, the intensive use of these polyamides inevitably leads to an accumulation of waste. At present, most of this waste is either landfilled or incinerated. Both landfill and incineration are not long-term sustainable solutions, leading to a waste of materials, an economic loss and numerous pollutants. The development of more environmentally-friendly mechanical and/or chemical recycling processes is absolutely essential.
Unlike the few current recycling processes for these plastics, the innovative UPNYL process developed in the laboratory (LCMCE at CEA) chemically transforms polyamides into new high value-added materials. This method opens access to innovative compounds while tackling the polyamide waste management issue.This internship project aims to optimize the UPNYL chemical upcycling process to evaluate the performance of new polymers derived from waste nylons and scale up this technology. The results of this internship will be crucial for the successful transfer of this technology, providing a clear indication of the future start-up’s positioning.
During the internship, you will develop your skills in catalysis, organic and organometallic synthesis, and polymer chemistry. You will work in an inert atmosphere using vacuum lines and glove boxes, as well as analyzing chemical compounds using NMR, GC-MS, IR, GPC, HPLC and elemental analysis.
Location
CEA Saclay, (91) Essonne, France
Internship conditions
- Internship duration: 6 months
- Level of study: Bac+5
- Training: Master 2
- Continuation in PhD thesis: No
- Application deadline: 2 février 2026
Experimental skills
Language : English
Useful methods and technics:
Catalysis, organic and organometallic synthesis
Working in an inert atmosphere using vacuum lines and glove boxes and analysis of chemical compounds using NMR, GC-MS, IR, GPC, HPLC and elemental analysis.Links
- Site web du laboratoire : https://iramis.cea.fr/nimbe/lcmce/
- Personal page of the internship supervisor
Supervisor
Marie Kobylarski
Phone: +33 1 69 08 87 89
Email :
January 30 2026February 2 20266 monthCEA Saclay, (91) Essonne, France -
Topic : CHIMIE
Keywords: Organic chemistryResearch Unit: NIMBE / LICSEN
Porphyrin-based nanostructures
Abstract
Porphyrins are aromatic tetrapyrrole macrocycles that exhibit a wide variety of optical, optoelectronic, and electrochemical properties. The aim of this project is to synthesize new porphyrin-based materials to take advantage of these properties.
Detailed subject
Le but de ce projet est de synthétiser de nouvelles molécules à base de porphyrines pour la fabrication de nanostructures mono- et bidimensionnelles. Les porphyrines sont des macrocycles tetrapyrroliques aromatiques ; les dérivés de porphyrines sont des briques essentielles du vivant, notamment pour le transport d’oxygène, pour les réactions d’oxydation et également pour la photosynthèse. Au-delà de cette importance dans le domaine du vivant, les propriétés optiques et électroniques des porphyrines en font un des matériaux les plus étudiés pour la conversion d’énergie, la catalyse, l’optique/optoélectronique et la médecine.
D’autre part, à cause de leur structure et de la grande versatilité de leur synthèse, les porphyrines meso-substituées ont permis la formation d’un large éventail de nanostructures covalentes ou supramoléculaires. [1-5]
Dans ce contexte, au cours de ce stage nous proposons de synthétiser des dérivés de porphyrines contenant des groupements PAHs (hydrocarbures aromatiques polycycliques) pouvant conduire à des porphyrines pi-étendues et/ou des nanostructures mono- et bidimensionnelles.[6-8] Avec ces assemblages, nous visons à exploiter les propriétés optiques et optoélectroniques des porphyrines.
Ce projet rassemble plusieurs partenaires possédant des expertises complémentaires en chimie (CEA Paris-Saclay), en optique (LuMIn, ENS et Université Paris-Saclay) et en microscopie à effet tunnel (ISMO, Université Paris-Saclay et IM2NP/CINaM Aix-Marseille Université). Pour ce projet le/la candidat(e) devra posséder une solide formation en chimie organique. Le projet sera réalisé en collaboration avec des physiciens ; le/la candidat(e) doit également avoir un goût prononcé pour le travail multidisciplinaire.
Références :
- [1] S. Mohnani and D. Bonifazi, Coord.Chem.Rev., 2010, 254, 2342-2362.
- [2] N. Aratani and A. Osuka, Bull.Chem.Soc.Jpn, 2015, 88, 1-27.
- [3] R. Haver and H. L. Anderson, Helv.Chim.Acta, 2019, 102, e1800211.
- [4] L. Grill, M. Dyer, L. Lafferentz, M. Persson, M. V. Peters and S. Hecht, Nat.Nanotechnol., 2007, 2, 687-691.
- [5] J. Otsuki, Coord.Chem.Rev., 2010, 254, 2311-2341.
- [6] N. Kalashnyk, M. Daher Mansour, J. Pijeat, R. Plamont, X. Bouju, T. S. Balaban, S. Campidelli, L. Masson and S. Clair, J. Phys. Chem. C, 2020, 124, 22137-22142.
- [7] J. Pijeat, L. Chaussy, R. Simoës, J. Isopi, J.-S. Lauret, F. Paolucci, M. Marcaccio and S. Campidelli, ChemOpen, 2021, 10, 997-1003.
- [8] M. Baljozovic, J. Pijeat, S. Campidelli and K.-H. Ernst, J. Am. Chem. Soc., 2024, 146, 50, 34600–34608.
Internship location
CEA Saclay, (91) Essonne, France
Internship conditions
- Durée du stage : 5-6 mois
- Niveau d’étude requis : Bac+5
- Formation : Master 2
- Poursuite possible en thèse : Oui
- Date limite de candidature : 5 décembre 2025
Required skills
Méthodes, techniques :
Synthèse organique, RMN, spectrométrie de masse.Langue : Anglais
Links
- Web site of the laboratory: NIMBE/LICSEN
- Personal web page of the supervisor: Stéphane CAMPIDELLI
Internship supervisor
Stéphane CAMPIDELLI
Tél. : +33 1 69 08 51 34
Email :Head of the laboratory NIMBE / LICSEN
December 31 2025February 2 20265 month6 monthCEA Saclay, (91) Essonne, France