M2 internship catalog


  • Domain, Specialties : Materials chemistry
    Keywords: Nanomaterials, Analytical chemistry

    Research Unit : NIMBE / LEDNA

    Summary

    Per- and polyfluoroalkyl substances (PFAS) are highly persistent molecules in groundwater and soils. Their stability comes from the robustness of C–F bonds, which require highly energetic processes for cleavage. While thermal degradation (>1000°C) can break these C–F bonds, it demands strict control of byproducts (notably HF). As an alternative, electrochemical processes are being investigated to generate reactive species (•OH, eₐq⁻) capable of breaking C–F bonds through radical mechanisms. Photocatalytic approaches are also gaining attention, involving the activation of semiconductors under UV/visible illumination to produce electron-hole pairs and generate oxidative (•OH, O₂⁻•) or reductive (eₐq⁻) species for the progressive mineralization of perfluorinated chains.

    Full description

    In this context of photocatalytic degradation, hydrogenated nanodiamonds emerge as a promising candidate. Recognized as a solid source of solvated electrons under UV illumination (supported by research conducted at NIMBE[1]) they have recently been tested as photocatalysts for the degradation of perfluorooctanesulfonate (PFOS) with encouraging results[2].This internship aims to build upon preliminary work at NIMBE, which confirmed the efficacy of hydrogenated nanodiamonds in the photodegradation of certain PFAS. The project will explore the performance of hydrogenated nanodiamonds of varying sources[3] and elucidate the underlying mechanisms driving the process. Photocatalytic reactions will be conducted using illumination setups equipped with different light sources, and catalytic processes will be mainly monitored via LC-MS.

    The intern will develop expertise in the synthesis and characterization of nanomaterials, photocatalysis, and analytical chemistry. Key techniques will include dynamic light scattering, zeta potential measurements, infrared and Raman spectroscopy, photoelectron spectroscopy, electron microscopy, liquid chromatography, and nuclear magnetic resonance.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: No
    • Application deadline: 16 février 2026

    Experimental skills

    Language : English

    Links

    Supervisor

    Hugues GIRARD
    Phone: 01 69 08 47 60
    Email :

    Head of the laboratory NIMBE / LEDNA

    Mathieu Pinault


    October 24 2025
    October 30 2025
    6 month
    France

  • Domain, Specialties : Physical chemistry
    Keywords: Nanomaterials, Flame Spray Pyrolysis, physical chemistry, atomic spectroscopy, laser, aerodynamic lens

    Research Unit : NIMBE / LEDNA

    Summary

    The objective of this internship is to develop an experimental device capable of performing in situ, real-time elemental analysis of nanoparticles during their synthesis (by flame pyrolysis). Laser-induced breakdown spectroscopy (LIBS) will be used to identify the different elements present and determine their stoichiometry.
    Preliminary experiments conducted at LEDNA have demonstrated the feasibility of such a project and, in particular, the acquisition of a LIBS spectrum from a single nanoparticle. Nevertheless, the experimental setup must be developed and improved in order to obtain a better signal-to-noise ratio, reduce the detection limit, take into account the various effects on the spectrum (effect of nanoparticle size, composition, or complex structure), and automatically identify and quantify the elements present.

    Full description

    Scientific description:

    The proposed work is part of a national effort to accelerate the discovery of innovative materials through the PEPR “Diadem” [1]. The aim is to provide the scientific community with an experimental device for synthesising specific nanoparticles in the gas phase, with an online, real-time analysis instrument to monitor the quality of the synthesis. This instrument provides immediate feedback on synthesis parameters, enabling faster convergence towards a targeted composition. More specifically, our objective is to perform in situ and real time elemental analysis of NanoParticles (NP) during their synthesis by Flame Spray Pyrolysis (FSP) [2]. Laser-Induced Breakdown Spectroscopy (LIBS) [3] will be used to identify the different elements present and, ultimately, their stoichiometry.

    Preliminary experiments carried out at NIMBE [4] have demonstrated the feasibility of such a project and in particular the acquisition of a LIBS spectrum of a single nanoparticle [5]. Nevertheless, a new experimental set-up [3] is currently being developed and improved in order to obtain a better signal-to-noise ratio and increase the detection limit.
    During this internship, the student will acquire LIBS signal from specific nanoparticles under vacuum and study the evolution of the signal obtained as a function of the size, composition and structure of the NP. Once the various effects have been understood and according to the time remaining, an automatic identification algorithm will be developed, as well as another one for automatic quantification.

    Techniques/methods in use:

    In order to carry out this internship, several benchmark materials will be selected from those currently being studied at NIMBE (Fe2O3, Fe3O4, Fe3C, FeNx, TiO2, Si, SiO2, FeCN). Before installing the new LIBS analysis chamber on the FSP device, instrumental and scientific work is first required to improve the current instrument. Thus, initially, a simple nanoparticle generator will be used to inject them into the LIBS chamber. The following improvements and studies will be carried out:

    • Optimization of the optical collection system
    • Optimization of the laser-NP interaction (laser focusing, pulse duration, energy per pulse, repetition rate)
    • Study of the LIBS signal as a function of NP size (size-calibrated nanoparticles will be used)
    • Development of complex NP analysis (multi-elements or core-shell NP)
    • Determination of the detection limit
    • Automatic identification and quantitative analysis of different elements

    Bibliography:

    1. https://www.pepr-diadem.fr/
    2. https://iramis.cea.fr/en/nimbe/leel/advanced-synthesis-of-nanomaterials
    3. https://iramis.cea.fr/en/nimbe/ledna/nanoparticle-analysis-by-laser-induced-breakdown-spectrometry-libs/
    4. https://iramis.cea.fr/nimbe/
    5. “Online elemental characterization of collimated nanoaerosols by laser-induced breakdown spectroscopy of isolated particles”, Cesar Alvarez-Llamas, Nathalie Herlin-Boime, Jean-Baptiste Sirven, Olivier Sublemontier, Spectrochimica Acta Part B: Atomic Spectroscopy 225 (2025) 107122.

    Applicant skills:

    Final year of engineering school or Master of Science (M2 research) in physics, physical chemistry or materials. Knowledge of optics and at least one of the following areas is desirable: physical chemistry, nanomaterials, atomic spectroscopy. The lack of knowledge in several of these fields can be filled during the internship.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 5 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: 2 mars 2026

    Experimental skills

    Language : English

    Links

    Supervisor

    Marc Briant
    Phone: 01 69 08 53 05
    Email :

    Head of the laboratory NIMBE / LEDNA

    Mathieu PINAULT
    Phone: 01 69 08 91 87


    January 30 2026
    February 2 2026
    5 month
    CEA Saclay, (91) Essonne, France

  • Domain, Specialties : CHEMISTRY
    Keywords: Recycling, depolymerisation, green chemistry

    Research Unit : NIMBE / LICSEN

    Summary

    This internship addresses a major environmental and economic challenge: e-waste recycling. Electronic waste is one of the fastest-growing waste streams globally, containing valuable metals like gold and polymer materials, yet its recovery remains limited and often harmful to the environment.

    Currently, only a small fraction of e-waste is recycled efficiently, leading to resource loss and significant pollution. Traditional methods are often energy-intensive or corrosive, struggling to balance effectiveness with sustainability.

    The goal of this internship is to develop greener chemical processes to recover metals and polymers from e-waste, reducing environmental impact while improving resource efficiency, a key step toward a circular economy and more responsible resource management.

    Full description

    The LICSEN laboratory at CEA has developed a process for recovering gold from electronic waste. This process involves dissolving the organic resin and non-precious metals in an inorganic acid, which allows gold to be recovered by sieving.

    To optimize the recycling of all materials and avoid waste, it is necessary to understand the chemical reactivity of resins with acids and to characterize their degradation products. This will be the first objective of the internship, using the physico-chemical techniques available in two NIMBE laboratories (FT-IR, Raman, TGA, GPC, NMR, XRD, GC-MS).

    The degradation of resin from electronic waste is currently performed using concentrated acid, which makes it difficult to apply this process on a larger scale due to acid corrosiveness and the potential dissolution and loss of metals. With the aim of valorizing the carbon-based polymer material (which accounts for ~50% of the total mass of electronic waste), the second objective of the internship will be to develop milder chemical methods to selectively depolymerize the resin into valuable monomers, which will then be isolated.

    The recycling methods developed will be compared using life cycle assessment (LCA) and techno-economic analysis, as well as by analyzing metal dissolution using XRF and/or ICP-AES. These approaches offer interesting prospects for the overall valorization of composite waste containing both metallic elements and organic resins, such as printed circuit boards and wind turbine blades.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: 1 mars 2026

    Experimental skills

    Language : English

    Useful methods and technics:
    FT-IR, Raman, ATG , GPC , RMN
    DRX , GC-MS , XRF , ICP-AES, ACV, TEA

    Computer languages and software: Open LCA

    Links

    Supervisor

    Guillaume Zante
    Phone: 0169089083
    Email :


    January 30 2026
    February 2 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Domain, Specialties : CHEMISTRY

    Keywords: Chemistry, homogeneous catalysis, reduction, polyamines, polyamides, polyurethanes.

    Research Unit : NIMBE / LCMCE

    Summary

    The recovery of plastic waste is a key issue towards a circular economy. Through homogeneous catalysis processes involving metal catalysts that are soluble in reducing environments, the aim of this internship is to discover effective catalyst/reducing agent pairs for reducing oxygenated groups and obtaining polyamines from plastic materials.

    Full description

    INTERNSHIP OBJECTIVES

    The internship will focus on the valorization of nitrogen-containing polymers through deoxygenation with the aim of obtaining polyamines compounds with very high potential for the development of new low-carbon resins for Saint Gobain composites (insulation, abrasives, etc.).

    The internship programme will be as follows:

    • Development of a catalytic system enabling selective deoxygenation of polymers: synthesis of ligands and catalysts, with particular attention paid to the EHS (Environment, Health, Safety) aspects of the compounds and conditions chosen.
    • Screening of catalytic systems: reactions on simple/model molecules, characterisation of the compounds and identification of the most effective system.
    • Application of the methodology to the model polymer selected from a avariety of ‘N,O) containing resins and characterisation of the products.
    • Preliminary tests on Saint-Gobain composites may be considered depending on the progress of the internship with a view to recycling.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: 2 février 2026

    Experimental skills

    Language : English

    Useful methods and technics:

    • Knowledge on coordination chemistry, organic chemistry
    • Manipulation under inert atmosphere : Gloves boxes, vacuum lines
    • NMR, GC-MS and crystallography.

    Links

    Site web du laboratoire : https://iramis.cea.fr/nimbe/lcmce/membres-lcmce/

    Supervisor

    BERTHET Jean-Claude
    Phone: 01 69 08 60 42
    Email :

    Head of the laboratory NIMBE / LCMCE

    BERTHET Jean-Claude
    Phone: 01 69 08 60 42


    January 30 2026
    February 2 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Domain, Specialties : CHEMISTRY
    Keywords: Process; Membrane; Analysis; Microfluidics

    Research Unit : NIMBE/LICSEN

    Summary

    The increase in global production of electronic equipment is driving growing demand for raw materials, while supply is becoming increasingly complex. In order to meet this demand, recycling electronic waste appears to be a strategic way of securing supply. In order to reduce environmental impact and recycle a wider range of metals, new methods based on hydrometallurgy are being developed, notably membrane separation processes. This internship aims to develop and study the separation properties of new materials for the design of selective membranes.

    Full description

    Over the past few decades, the production of waste electrical and electronic equipment (WEEE) has increased significantly, reaching approximately 62 million tonnes in 2022. However, in the same year, less than 22% of this waste was properly collected and recycled. At the same time, demand for raw materials is growing, while their supply is becoming increasingly complex and costly.

    To overcome these difficulties, research is turning to the recycling of WEEE, often referred to as ‘urban mines’ because they are rich in critical materials. The processes currently used are largely based on pyrometallurgy, which involves treating waste at high temperatures. This method allows certain precious metals to be recovered, but it remains energy-intensive and is not well suited to recycling all the elements present in WEEE.

    New treatment methods are therefore being explored, in particular hydrometallurgy. This approach involves dissolving the metal components, then selectively separating the metal ions (by liquid-liquid extraction, precipitation, membrane processes, etc.) before reusing them. This method is more selective and less energy-intensive than pyrometallurgy, but it still has limitations in terms of reagent consumption and the separation of metals with similar chemical properties.

    In this context, the development of selective membranes appears to be a promising avenue. For example, membranes incorporating crystalline inorganic materials offer modifiable structural and chemical properties, allowing selectivity towards different ions to be adjusted while maintaining excellent stability in acidic environments.

    The aim of this internship is to study the separation properties of membranes made from new inorganic materials derived from a material studied in the laboratory. The student will be required to synthesise and characterise inorganic materials, integrate them into membranes and evaluate their separation performance using protocols developed in the laboratory.

    The intern will be trained in numerous characterisation techniques (X-ray diffraction, X-ray fluorescence, scanning electron microscopy, thermogravimetric analysis, ICP-OES spectrometry). He/she will also use a membrane testing device that allows real-time analysis using a microfluidic setup. He/she will thus develop dual expertise in materials chemistry and the physical chemistry of separation processes, while acquiring a high degree of experimental autonomy.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: 2 mars 2026

    Experimental skills

    Language : English

    Useful methods and technics:
    Synthesis in solid-state chemistry; X-ray diffraction, X-ray fluorescence, scanning electron microscopy, thermogravimetric analysis, ICP-OES spectrometry

    Computer languages and software:
    Office suite; Python is a plus; CAD is a plus (for 3D printing)

    Supervisor

    Jean-Christophe Gabriel
    Phone: 0169084838
    Email :


    January 30 2026
    March 2 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Domain, Specialties : Radiochemistry
    Keywords: gas handling; electron irradiation; microfabrication; gas analysis ; instrumentation

    Research Unit : NIMBE / LIONS

    Summary

    The use of ionizing radiation has been proposed to be a low impact treatment of gaz pollutant, both from an energetic and environmental point of view. This master thesis investigates the effects of ionizing radiation (electron beams) on various gas compositions. The project examines decomposition mechanisms of pollutant gases under controlled irradiation conditions, in an electron microscope. Experimental work involves irradiation cell and gas line development, dose quantification and optimization of the effect of the reactor material.

    Full description

    Human activities, in particular industrial processing, are responsible for significant gas pollution, which has harmful effects on the ecosystem and is causing climate change. The main polluting gases are SOx, NOx, and volatile organic compounds, which mostly originates from the extraction and processing of oil and coal. In order to mitigate this pollution, numerous physical and chemical techniques have been developed, to either separate or transform pollutants: methods such as water absorption, solid absorption, or membrane separation. However, these different methods often involve significant energy consumption, either to ensure the effectiveness of the treatment or to regenerate the sorbent material, and can lead to secondary pollution through the production of solid or liquid waste.

    In this context, the use of ionizing radiation has been proposed to be a low impact treatment of gas pollutants. Exposure of matter to ionizing radiation generates the formation of free radicals, which are highly reactive species that participate in a cascade of chemical reactions and can ultimately alter the composition of the irradiated matter. These radiolytic phenomena, which can be problematic when affecting biological organisms in an uncontrolled manner, can conversely be exploited in gas treatment if used in a controlled way. The use of ionizing radiation in the mitigation of gas pollution has been considered for about 20 years, but is now attracting growing interest due to our ability to develop less demanding radiation sources.

    This master thesis investigates the effects of ionizing radiation (electron beams) on various gas compositions. The project examines decomposition mechanisms of pollutant gases under controlled irradiation conditions, in an electron microscope. Experimental work will involve irradiation cell and gas line development, electron dose quantification and optimization of the effect of the reactor material. Gas composition after irradiation will be characterized, either online by residual gas analysis (RGA) directly after irradiation, or ex situ using the various equipment available on the SUITABL platform of the LIONS laboratory.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: No
    • Application deadline: 30 novembre 2025

    Experimental skills

    Language : English

    Useful methods and technics: Electron microscopy, gas handling, microfabrication/microfluidics, gas analysis (RGA, µ-GC).
    Instrumental and experimental skills, as well as high-quality reporting are required.

    Computer languages and software: Standard softwares – Word, Excel.

    Links

    Supervisor

    Jean-Philippe RENAULT ; Corinne CHEVALLARD
    Phone: +33 1 69 08 15 50 ; +33 1 69 08 54 89
    Email: ;

    Head of the laboratory NIMBE / LIONS

    Antoine THILL; ; Tél. : +33 1 69 08 99 82


    November 30 2025
    February 2 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Domain, topic: Chemistry
    Keywords: Health, analytical chemistry, mass spectrometry, disease biomarkers

    Research Unit: NIMBE / LEDNA

    Development of an oligosaccharide purification method for glycomic analysis of biological samples

    Subject

    Mise en place d’une méthode de purification d’oligosaccharides pour l’analyse glycomique d’échantillons biologiques

    Detailed subject

    Mots-clés : Santé, chimie analytique, spectrométrie de masse, biomarqueurs de maladies.

    Durée : 6 mois
    Début souhaité : Février / Mars 2026
    Lieu : CEA Saclay (DRF/IRAMIS/NIMBE/LEDNA)

    Au sein du CEA Paris-Saclay, le Laboratoire ÉDifices NAnométriques (LEDNA) concentre ses recherches sur la création de matériaux nanométriques, avec des applications allant de la catalyse et du stockage d’énergie à la bio-analyse.

    Research project

    Le LEDNA a récemment développé des dispositifs miniaturisés intégrant des monolithes à porosités hiérarchisées. En collaboration avec le Laboratoire Innovations en spectrométrie de Masse pour la Santé (LI-MS), l’application des HPM dans les protocoles de purification des glycanes, N-liés ou libres, a démontré un fort potentiel pour simplifier et accélérer l’analyse glycomique. Cependant, l’emploi de ce dispositif dans un contexte hospitalier impose une facilité d’utilisation et des protocoles expérimentaux robustes et validés.

    Objective

    Dans ce cadre, le(la) candidat(e) sera chargé(e) d’optimiser et valider la méthode de purification des glycanes (N-liés ou libres) par extraction en phase solide (SPE) intégrée dans des dispositifs miniaturisés permettant de travailler avec de faibles volumes d’échantillons. Les conditions d’analyse par spectrométrie de masse (MALDI-TOF-MS) des glycanes ainsi purifiés seront également optimisées et validées.

    Main tasks

    • Formation au protocole d’analyse glycomique :
    • purification des glycanes (initialement N-liés ou libres) par extraction en phase solide (SPE),
    • analyse par spectrométrie de masse (MALDI-ToF-MS).
    • Conception de plans d’expériences pour déterminer les conditions optimales du protocole.
    • Évaluation de la méthode sur divers échantillons biologiques (lait maternel, plasma humain)
    • Essais en conditions réelles à partir d’échantillons de patients.

    Profil du/de la candidat(e)

    Étudiant issu de formation de niveau Master 2 ou école d’ingénieur avec une spécialisation en chimie analytique, biochimie ou sciences pharmaceutiques. Un goût pour le développement analytique serait un atout.

    Contacts :

    • Marc MALEVAL,
    • Gabriel MANSOUR,

    Les candidatures doivent être adressées par mail aux responsables du projet et doivent comporter une lettre de motivation et un CV.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Durée du stage : 6 mois
    • Niveau d’étude requis : Bac+5
    • Formation : Master 2
    • Poursuite possible en thèse : Oui
    • Date limite de candidature : 16 janvier 2026

    Experimental skills

    Langue : Anglais

    Méthodes, techniques : MALDI-TOF-MS, Extraction en Phase Solide

    Links

    Internship supervisor

    Marc Maleval
    Tél. : 01 69 08 49 33
    Email :


    October 8 2025
    October 30 2025
    6 month
    France

  • Domain, topic: CHEMISTRY
    Keywords: Solid-phase extraction, instrumentation, microextraction mass spectrometry

    Research Unit: NIMBE / LEDNA

    Subject

    Development of a miniaturized system for automated solid-phase extraction

    Detailed subject

    Durée : 5-6 mois
    Début souhaité : Février / Mars 2026
    Lieu : CEA Saclay (DRF/IRAMIS/NIMBE/LEDNA)

    Basé au CEA Saclay, le Laboratoire des EDifices Nanométriques (LEDNA) est axé sur la recherche fondamentale en nanosciences, son expertise porte sur le développement bottom-up de méthodes de synthèse et d’élaboration de nano-objets ou de matériaux nanostructurés originaux et ce, dans le but de développer des applications à fort impact sociétal dans les domaines de l’énergie, de l’environnement, de la santé et des matériaux composites fonctionnels.

    Projet de recherche :

    Au sein du LEDNA, des dispositifs miniaturisés intégrant des matériaux poreux ont été développés pour l’enrichissement d’analytes par Extraction sur Phase Solide (SPE). Néanmoins, les systèmes actuellement employés pour la manipulation des fluides au sein du dispositif sont peu compatibles avec des formats miniaturisés et une automatisation, ce qui limite intrinsèquement la simplification et la rapidité d’exécution des protocoles SPE.

    Objectif :

    Dans ce contexte, le stage proposé a pour objectif de développer un système de contrôle fluidique pour des dispositifs miniaturisés. Le/La candidat(e) participera en lien avec un doctorant à la conception et l’assemblage d’un système de contrôle fluidique, à son expérimentation et optimisation et à son évaluation dans des protocoles SPE.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: January 2026, 16th

    Experimental skills

    Language: English

    The candidate, a student from an engineering school or Master’s degree program with a specialization in physical chemistry or analytical chemistry, must demonstrate good communication skills, be able to work in a team, and appreciate instrumental and methodological development.

    LINKS

    Responsable du stage

    Marc Maleval
    Tél. : 01 69 08 49 33
    Email :


    January 16 2026
    February 2 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Domain, Specialties: Chimie des matériaux
    Keywords: Traitement de données, spectroscopie, patrimoine

    Unit: NIMBE/LAPA

    Summary

    L’objectif de ce stage est de collecter sur des mêmes zones d’échantillon des cartographies à trois longueurs d’onde 473, 532 et 785 nm. Les jeux de données collectés seront traités à l’aide de méthodes chimiométriques de fusion de données dites “multiblocs”. Des approches impliquant la chimiométrie ou l’intelligence artificielle peuvent être mises en œuvre pour optimiser les résultats.

    Full description

    Dans le cadre de la protection des métaux du patrimoine, la recherche de solutions efficaces et durables pour lutter contre la corrosion atmosphérique, en extérieur ou en contexte muséal, est un enjeu de première importance. Les métaux cuivreux du patrimoine sont recouverts d’une couche de produits de corrosion qui fait partie intégrante de l’œuvre et qui convient d’être protégée. Les traitements de protection du patrimoine sont donc appliqués directement sur la couche de produits de corrosion.

    Au sein du NIMBE-LAPA, des produits à base de sol-gel dopés en inhibiteur de corrosion non toxiques pour l’environnement (acides carboxyliques) sont développés et appliqués sur des objets cuivreux historiques représentatifs car corrodés [1]. La couche de produits de corrosion formée sur ces objets a une épaisseur de quelques dizaines de micromètres, et est constituée de phases minérales de type cuprite et brochantite. La sol dopé, appliqué à la surface pénètre dans les porosités de la couche, se gélifie en libérant les acides carboxyliques qui vont précipiter pour former un carboxylate de cuivre hydrophobe. Les interactions entre les phases minérales de la couche et les composés du traitement de protection sont complexes et se produisent à l’échelle micrométrique.

    Pour bien comprendre l’effet de ce traitement il est nécessaire d’effectuer des analyses de la distribution des différentes phases à cette échelle. Pour produire une image de la distribution de ces phases dans l’épaisseur de la couche, la spectroscopie Raman est une technique performante. Cependant l’ensemble de ces phases a des réponses différentes selon la longueur du laser mise en œuvre. Les phases minérales ont un bon rendement de diffusion Raman dans les longueurs d’onde du bleu au vert alors que les composés organiques, qui fluorescent, présentent des spectres plus lumineux dans le rouge et proche infrarouge.

    L’objectif de ce stage est de collecter sur des mêmes zones d’échantillons traités de larges cartographies aux longueurs d’onde 473, 532 et 785 nm (plusieurs centaines de micromètres en X et Y, avec une résolution de quelques micromètres). Les jeux de données collectés seront traités à l’aide de méthodes chimiométriques de fusion de données dites “multiblocs”. Ces méthodes permettent de combiner efficacement les informations issues des 3 sources laser (représentant trois blocs distincts), en exploitant les relations entre elles afin obtenir une analyse plus complète et précise des échantillons. L’analyse simultanée des 3 blocs offre une meilleure interprétation des phénomènes complexes en tirant parti de la complémentarité des données tout en compensant les limitations spécifiques à chaque bloc individuel [2].

    Pour garantir l’efficacité de ces méthodes, une étape de prétraitement des données est indispensable. Ce prétraitement inclut notamment la réduction du bruit, la correction des effets de fluorescence, etc… Cette étape est cruciale pour améliorer la qualité des données, maximisant ainsi l’efficacité des méthodes multiblocs. Des approches impliquant la chimiométrie ou l’intelligence artificielle peuvent être mises en œuvre pour optimiser les résultats.

    [1] S. Lob, D. Neff, T.-H. Tran-Thi, M.C. Richter, C. Rivron, Hydrophobic coating using sustainable sol-gel process doped with carboxylic acids to protect heritage copper artefacts, Prog. Org. Coatings. 186 (2024) 108035.

    [2] F. Ammari, L. Bassel, C. Ferrier, D. Lacanette, R. Chapoulie, B. Bousquet. Multi-block analysis coupled to laser-induced breakdown spectroscopy for sorting geological materials from caves. Talanta 159 (2016) 287-291.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: No
    • Application deadline: January 2026, 16th

    Experimental skills

    Langue : Anglais

    Méthods, Techniques:

    • Spectroscopie Raman
    • Chimiométrie
    • Intelligence artificielle

    Langages informatiques et logiciels :

    • Python

    Links

    Internship Supervisor

    Faten AMMARI
    Tél. : 01.69.08.49.74
    Email :

    Responsable

    Delphine NEFF
    Tél. : 01.69.08.33.40


    January 16 2026
    February 2 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Domain, Specialties : Materials chemistry
    Keywords: CO2 capture, Nanomaterials, Artificial Intelligence, Small-Angle X-ray scattering

    Research Unit : NIMBE / LIONS

    Summary

    This internship explores the discovery of new nanostructured oxides for CO2 capture using an approach combining robotic synthesis and artificial intelligence. The project aims to validate this innovative methodology while identifying materials with improved performance.

    Full description

    The automation of chemical synthesis assisted by artificial intelligence opens new prospects for accelerated discovery of functional materials. However, the validity of these approaches compared to conventional methods remains to be established, particularly for the synthesis of nanostructured oxides intended for CO2 capture and sequestration.

    The internship addresses two complementary scientific questions:

    • Methodological validation: Determine whether robotic synthesis produces materials equivalent to those obtained by conventional routes, or whether automation generates specific synthesis pathways with distinct properties
    • Parameter space exploration: Systematically explore the influence of multiple parameters (oxide types, nanostructuring agents, injection protocols) to identify materials exceeding current CO2 capture performance

    The intern will implement an experimental protocol combining:

    • Solution-based syntheses, both automated (Opentrons Flex robot) and manual for comparison
    • Structural characterization by small-angle X-ray scattering (SAXS, laboratory and synchrotron)
    • Adsorption property measurements (BET, CO2 capture/release) in collaboration with ENSTA
    • Programming for robot control and data analysis

    This high-throughput approach will enable exploration of a parameter space inaccessible by conventional methods.

    Experimental skills developed:

    • Oxide synthesis in solution (conventional and robotic methods)
    • Advanced characterization techniques (SAXS, physisorption, gas adsorption)
    • Use of automated equipment and associated programming

    Methodological skills developed:

    • High-throughput experiment design
    • Critical analysis of complex datasets
    • Rigorous scientific validation approach

    The internship also offers the opportunity to work with advanced research equipment (synchrotron) and develop expertise at the interface between materials chemistry and computational methods.

    The internship will take place within a 4-person team working on this topic, in a laboratory of approximately 30 researchers. The intern will have access to the following equipment:

    • Opentrons Flex synthesis robot
    • Laboratory X-ray scattering and synchrotron beamtime
    • Chemistry laboratory for synthesis and preparations
    • Gas characterization platform (CO2 capture/release, BET)

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: 2 février 2026

    Experimental skills

    Candidate profile: Master’s degree (M2) in materials science, solid-state chemistry, physical chemistry, or related disciplines.

    Knowledge of oxide synthesis and physicochemical characterization is desired. An interest in programming represents a significant asset to fully exploit the capabilities of the robotic approach. The project will particularly suit candidates interested in innovative methodological approaches in materials science and in issues related to the energy transition.

    Language : English

    Supervisor

    David Carrière
    Phone: +33 1 69 08 54 89
    Email :

    Head of the laboratory NIMBE / LIONS

    Antoine Thill
    Phone: +33 1 69 08 99 82


    November 16 2025
    February 2 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Domain, Specialties : Organic chemistry
    Keywords: catalysis, synthetic methodology

    Research Unit : NIMBE / LCMCE

    Summary

    Faced with the depletion of fossil resources, this internship explores an alternative: using bio-based alkyl esters as electrophiles in cross-coupling reactions (Heck type), replacing polluting organic halides. The objective is to develop catalytic methods using abundant metals such as Fe/Co in photo- or thermocatalysis via tandem catalysis to activate the C–O bonds of esters. The project will build on the laboratory’s work in ester activation and preliminary results. This is an opportunity to contribute to circular chemistry, applicable to the pharmaceutical, agrochemical, and materials industries.

    Full description

    Context and Subject of the internship

    The easy access to energy and carbon-based raw materials offered by the fossil feedstock allowed for the rapid growth of our society. Nevertheless, the expected depletion of fossil resources and climate change require a switch to a more sustainable model. Bio-based feedstock is a promising carbon source to substitute petrochemicals, but requires a drastic shift from the current model. While the current paradigm relies on the production of energy and high-value molecules through oxidation steps, a model based on Carbon Circular Economy, i.e., the transformation of CO2 and biomass feedstock that are already highly oxidized materials, demands the development of new methodologies for reduction, deoxygenation, and the direct use of oxygenated bonds to access functionalized and useful organic molecules.

    In organic chemistry, cross-coupling reactions represent one of the major tools to create C–C bonds. However, they are still based mainly on the use of organic halides as electrophiles. In this project, the Master student will demonstrate that readily available and abundant alkyl esters can serve as electrophilic coupling partners in cross-coupling reactions with alkenes. Esters can indeed be directly biosourced or easily synthesized from alkyl carboxylic acids and alcohols, thereby diminishing the environmental impact of the carbon-carbon bond formation.

    Objectives and Methodology

    The main objective of the project will be the development of catalytic Heck-type cross-coupling reactions, under both thermal and photo-activation, catalyzed by non-noble metals (Fe, Co…). To activate alkyl esters, we envisage the use of tandem catalysis, where two catalysts will work in synergy to perform the reaction. The master project will draw on ongoing research in our laboratory on the reactivity of esters,1 C–O bond activations,2 and preliminary unpublished results.

    Funding is available to continue this project with a doctoral thesis starting in fall 2026.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: 2 février 2026

    Experimental skills

    Language : English

    Useful methods and technics:
    The master student will develop his/her skills in catalysis, organic and organometallic synthesis, working under inert atmosphere (Schlenk lines, gloveboxes), as well as in the analysis of chemical compounds (NMR, GC-MS, IR, X-Ray). The student will also have access to modern optimization methods for catalytic systems, such as highthrouput experimentation (HTE) and DFT computations, and be trained in these techniques if he/she so wishes.

    Computer languages and software: N/A

    Links

    Site web du laboratoire : https://iramis.cea.fr/en/nimbe/lcmce/

    Personal web page of supervisor:

    Supervisor

    Lucile Anthore-Dalion
    Phone: +33 1 69 08 91 59
    Email :

    Head of the laboratory NIMBE / LCMCE


    Phone:


    January 30 2026
    February 2 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Domain, Specialties : Physical chemistry
    Keywords: energy transition, low-carbon cement and concrete, SAXS, microfluidics, automation

    Research Unit : NIMBE / LIONS

    Summary

    This project aims to adapt a cement microreactor, recently developed for in situ analysis of carbonation curing by XRD, so that it is compatible with the DIADEM FastNano automated SAXS platform. The goal is to better understand the simultaneous evolution of cement structure and porosity during the early stages of curing, a key factor for CO₂ capture and mechanical properties. The intern will contribute to the technical development of the microreactor as well as to the implementation of scripts for automated SAXS data collection and processing.

    Full description

    The production of ordinary Portland cement (OPC) clinker accounts for up to 8% of global CO2 emissions. Approximately 40% of this CO2 comes from the energy expended by heating the raw limestone and clays needed to produce the clinker, while the remaining 60% is released from the carbonates trapped within the limestone. Unfortunately, only a small fraction of this released CO2 is re-captured when cements are hardened through standard hydration processes. To reduce net CO2 emissions, a growing number of researchers and start-up companies (e.g., CarbonCure, Fortera) are working to cure cements through a combination of hydration and carbonation to re-capture released CO2. However, the carbonation of cements is a poorly understood phenomenon that can proceed through complex multi-step pathways.
    Due to its density, hardness, and opacity, cement setting processes are extraordinarily difficult to study. To overcome this challenge, our lab recently developed a cement “microreactor” that enables real-time analysis of cement curing (Figure) and used it to study the evolving structure of cements using X-ray diffraction (XRD). The goal of this internship is to adapt the microreactor for use on the new DIADEM FastNano automated small-angle X-ray scattering (SAXS) platform. In addition to obtaining structural information by XRD, SAXS will enable us to uncover the evolving porosity of cements during early curing stages, which is crucial to CO2 transport and mechanical strength. The intern will help us to develop microreactor hardware for performing in situ SAXS analysis and accompanying scripts for the automated collection and treatment of SAXS data.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: Yes
    • Application deadline: 2 février 2026

    Experimental skills

    Language : English

    Useful methods and technics:
    SAXS/WAXS, XRD, 3D printing, computer-aided design

    Computer languages and software:
    Python, pySAXS

    Links

    Site web du laboratoire : NIMBE/LIONS

    Web page of supervisor : Mark Levenstein

    Supervisor

    Mark Levenstein
    Phone: 01 69 08 57 34
    Email :

    Head of the laboratory NIMBE / LIONS

    Antoine Thill


    January 30 2026
    February 2 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Domain, Specialties : CHEMISTRY
    Keywords: Synthesis, batteries

    Research Unit: NIMBE / LEDNA

    Summary

    The integration of a reference electrode into a battery allows the electrochemical potential of a given electrode to be measured without affecting the battery’s performance. This potential measurement provides insight into the battery’s aging mechanisms, thereby enabling its performance to be optimized. The aim of this Master’s 2 research project is to synthesize electrode materials that can be used in Na-ion batteries.

    Full description

    Due to the growing demand for mobile energy storage, particularly in the automotive sector, research is focusing both on new battery technologies offering new prospects in terms of storage capacity and safety, and on diagnostic measures to detect battery aging mechanisms. In this context, it is particularly interesting to develop reference electrode materials for Na-ion batteries.

    The LEDNA team at NIMBE is devoted to s synthese different types of nanomaterials to address societal challenges in the energy, environment, and health sectors. As part of its research activities, the laboratory is developing several synthesis methods for obtaining customized nanoparticles (control of the chemical composition, size, and morphology of the nanoparticles). As part of this project, a state-of-the-art analysis will be carried out to determine the relevant materials for the application. These will be synthesized using various processes such as microwave-assisted solvothermal synthesis in air or under an inert atmosphere.
    The synthesized materials will be finely characterized using conventional techniques such as powder X-ray diffraction (crystallographic structure) and SEM analysis (particle size and morphology). Cyclic voltammetry measurements will complete this panel to study the electrochemical properties of these materials. The materials with the best properties will be used by the project partners as the active material for the production of reference electrodes and tested electrochemically.

    This project is being carried out in collaboration with several partners with complementary expertise, particularly in electrochemical cell instrumentation and post-mortem battery characterization (CEA/LITEN in Grenoble). Meetings between the various partners will take place during the internship.

    References:
    [1] L. Baggetto, et al., J. Phys. Chem. C, 118 (2014), pp. 7856-7864
    [2] L. Baggetto et al., Electrochem. Commun. 2013, 34, 41– 44
    [3] Y. Zhu, et al., Nanoscale, 5 (2013), pp. 780-787
    [4] Z. Jian, et al. Electrochem. Commun., 14 (2012) 86-89.
    [5] X. Zhang, et al. Nanoscale, 2019, 11, 2556.
    [6] T. Akçay, et al., ACS Applied Energy Materials 2021 4 (11), 12688-12695

    Location

    CEA-Saclay, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: No
    • Application deadline: 5 janvier 2026

    Experimental skills

    Language : English

    Useful methods and technics:
    Inorganic synthesis (by microwave, sol-gel, combustion), XRD, SEM, IR, BET, electrochemistry

    Supervisor

    Suzy SURBLE
    Phone: 01 69 08 69 16
    Email :

    Head of the laboratory NIMBE / LEDNA

    Suzy SURBLE
    Phone: 01 69 08 69 16


    January 9 2026
    February 2 2026
    6 month
    France

  • Domain, Specialties : Chemisry
    Keywords: Polymer chemistry, plastic waste valorization

    Research Unit : NIMBE / LCMCE

    Summary

    R&D Internship on an innovative chemical route for upcycling nylon waste

    Full description

    Polyamides, in particular nylon 6 and nylon 6/6, are widely used as fibers or engineering plastics in various application sectors (textile, automotive, construction, etc.). Despite the development of reuse methods to extend the lifespan of products, the intensive use of these polyamides inevitably leads to an accumulation of waste. At present, most of this waste is either landfilled or incinerated. Both landfill and incineration are not long-term sustainable solutions, leading to a waste of materials, an economic loss and numerous pollutants. The development of more environmentally-friendly mechanical and/or chemical recycling processes is absolutely essential.
    Unlike the few current recycling processes for these plastics, the innovative UPNYL process developed in the laboratory (LCMCE at CEA) chemically transforms polyamides into new high value-added materials. This method opens access to innovative compounds while tackling the polyamide waste management issue.

    This internship project aims to optimize the UPNYL chemical upcycling process to evaluate the performance of new polymers derived from waste nylons and scale up this technology. The results of this internship will be crucial for the successful transfer of this technology, providing a clear indication of the future start-up’s positioning.

    During the internship, you will develop your skills in catalysis, organic and organometallic synthesis, and polymer chemistry. You will work in an inert atmosphere using vacuum lines and glove boxes, as well as analyzing chemical compounds using NMR, GC-MS, IR, GPC, HPLC and elemental analysis.

    Location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Internship duration: 6 months
    • Level of study: Bac+5
    • Training: Master 2
    • Continuation in PhD thesis: No
    • Application deadline: 2 février 2026

    Experimental skills

    Language : English

    Useful methods and technics:
    Catalysis, organic and organometallic synthesis
    Working in an inert atmosphere using vacuum lines and glove boxes and analysis of chemical compounds using NMR, GC-MS, IR, GPC, HPLC and elemental analysis.

    Supervisor

    Marie Kobylarski
    Phone: +33 1 69 08 87 89
    Email :


    January 30 2026
    February 2 2026
    6 month
    CEA Saclay, (91) Essonne, France

  • Topic : CHIMIE
    Keywords: Organic chemistry

    Research Unit: NIMBE / LICSEN

    Porphyrin-based nanostructures

    Abstract

    Porphyrins are aromatic tetrapyrrole macrocycles that exhibit a wide variety of optical, optoelectronic, and electrochemical properties. The aim of this project is to synthesize new porphyrin-based materials to take advantage of these properties.

    Detailed subject

    Le but de ce projet est de synthétiser de nouvelles molécules à base de porphyrines pour la fabrication de nanostructures mono- et bidimensionnelles. Les porphyrines sont des macrocycles tetrapyrroliques aromatiques ; les dérivés de porphyrines sont des briques essentielles du vivant, notamment pour le transport d’oxygène, pour les réactions d’oxydation et également pour la photosynthèse. Au-delà de cette importance dans le domaine du vivant, les propriétés optiques et électroniques des porphyrines en font un des matériaux les plus étudiés pour la conversion d’énergie, la catalyse, l’optique/optoélectronique et la médecine.

    D’autre part, à cause de leur structure et de la grande versatilité de leur synthèse, les porphyrines meso-substituées ont permis la formation d’un large éventail de nanostructures covalentes ou supramoléculaires. [1-5]

    Dans ce contexte, au cours de ce stage nous proposons de synthétiser des dérivés de porphyrines contenant des groupements PAHs (hydrocarbures aromatiques polycycliques) pouvant conduire à des porphyrines pi-étendues et/ou des nanostructures mono- et bidimensionnelles.[6-8] Avec ces assemblages, nous visons à exploiter les propriétés optiques et optoélectroniques des porphyrines.

    Ce projet rassemble plusieurs partenaires possédant des expertises complémentaires en chimie (CEA Paris-Saclay), en optique (LuMIn, ENS et Université Paris-Saclay) et en microscopie à effet tunnel (ISMO, Université Paris-Saclay et IM2NP/CINaM Aix-Marseille Université). Pour ce projet le/la candidat(e) devra posséder une solide formation en chimie organique. Le projet sera réalisé en collaboration avec des physiciens ; le/la candidat(e) doit également avoir un goût prononcé pour le travail multidisciplinaire.

    Références :

    • [1] S. Mohnani and D. Bonifazi, Coord.Chem.Rev., 2010, 254, 2342-2362.
    • [2] N. Aratani and A. Osuka, Bull.Chem.Soc.Jpn, 2015, 88, 1-27.
    • [3] R. Haver and H. L. Anderson, Helv.Chim.Acta, 2019, 102, e1800211.
    • [4] L. Grill, M. Dyer, L. Lafferentz, M. Persson, M. V. Peters and S. Hecht, Nat.Nanotechnol., 2007, 2, 687-691.
    • [5] J. Otsuki, Coord.Chem.Rev., 2010, 254, 2311-2341.
    • [6] N. Kalashnyk, M. Daher Mansour, J. Pijeat, R. Plamont, X. Bouju, T. S. Balaban, S. Campidelli, L. Masson and S. Clair, J. Phys. Chem. C, 2020, 124, 22137-22142.
    • [7] J. Pijeat, L. Chaussy, R. Simoës, J. Isopi, J.-S. Lauret, F. Paolucci, M. Marcaccio and S. Campidelli, ChemOpen, 2021, 10, 997-1003.
    • [8] M. Baljozovic, J. Pijeat, S. Campidelli and K.-H. Ernst, J. Am. Chem. Soc., 2024, 146, 50, 34600–34608.

    Internship location

    CEA Saclay, (91) Essonne, France

    Internship conditions

    • Durée du stage : 5-6 mois
    • Niveau d’étude requis : Bac+5
    • Formation : Master 2
    • Poursuite possible en thèse : Oui
    • Date limite de candidature : 5 décembre 2025

    Required skills

    Méthodes, techniques :
    Synthèse organique, RMN, spectrométrie de masse.

    Langue : Anglais

    Links

    Internship supervisor

    Stéphane CAMPIDELLI
    Tél. : +33 1 69 08 51 34
    Email :

    Head of the laboratory NIMBE / LICSEN

    Frédéric OSWALD


    December 31 2025
    February 2 2026
    5 month
    6 month
    CEA Saclay, (91) Essonne, France