Synthesis, Chemistry for safe, thrifty and useful nanomaterials

Nanoparticles Synthesis

The development of nanotechnology based nowdays on the assembly (or even self-assembly) of building blocks that are nanoparticles. The goal is to make use of the intrinsic properties of nanoparticles such as their plasmonic capacities, high surface area or reactivity and of their assembly, to obtain new functional devices such as nanofiltration membranes or photonic crystals.

bla bla

blabla

Quantum Field Theory, Conformal Field Theory and Integrable Systems

Quantum field theory is the pillar of modern quantum theory and of high energy physics, and of part of statistical mechanics. Conformal field theories (CFT’s , i.e. theories invariant under Virasoro symmetry – local angle-preserving transformations – and of possibly higher extended symmetries) are of special interest.

After more than 40 years, they still undergo tremendous developments, e.g. the conformal bootstrap program and Liouville theory, non-unitary CFT’s, lattice regularisationsof CFT’s, with applications to condensed matter and statistical physics. A vast and partly overlapping field is the study of integrable systems, classical and quantum systems with an infinite number of conserved quantities (like energy and momentum), but non-local, associated with infinite dimensional symmetry algebras. They allow to study non-perturbatively physical systems with strong statistical and quantum fluctuations.

Mathematical physics, in its wide anglo-saxon meaning, spans a wide range of topics in theoretical physics, from almost pure mathematics to some studies which can be related to experiments.

Despite this variety, many of these topics are connected by the fact that they use common mathematical and theoretical tools (quantum field theory, integrable systems, conformal field theory, string theories, random matrices, combinatorics, probability and random processes), and that mathematical rigor and consistency, and the obtention of precise and often explicit results, are very important.

Many of these tools have been developed over the years at IPhT.

On several subjects, contacts and collaborations between IPhT and mathematicians develop quickly. This does not reflect a move towards more abstraction, but a genuine interest of mathematicians for problems from physics, and of physicsts for the ideas and the new mathematical tools developped by mathematicians. Mathematical physics at IPhT also has close contacts with statistical physics and high energy physics. For instance, important progress are made on the problem of evaluating scattering amplitudes, which is now finding its way in LHC phenomenology, in cosmology and in statistical physics.