AttoPhysics

AttoPhysics

Head of Attophysic group : Pascal SALIERES

Scientific goals

In the last ten years, the development of perfectly controlled femtosecond laser pulses at high intensities and few-cycle duration has opened a whole new range of opportunities. Indeed, this allows controlling with fs/as precision their interaction with matter and, in particular, creating secondary sources of XUV radiation in the attosecond range (1 as= 10-18 s) using the high harmonic generation (HHG) process. These advanced femtosecond/attosecond sources allow probing the structure and dynamics of matter on the atomic/electronic timescales and lengthscales (Angström). This has become a hot topic in the scientific community with intense international competition.

Based on the expertise accumulated over 30 years of intense laser-matter studies, the main goals of the Attophysics group in the last five years have been the following:

I) Understand and control the laser-driven rescattering dynamics of an oscillating electron with the ion core, that leads to a number of important processes, such as electron-ion elastic scattering, multiple ionization or recombination with emission of attosecond pulses of XUV light

II) Develop the attosecond technologies, i.e., the synthesis of attosecond sources with controlled properties (polarization, single/multiple pulses separated in space/time, …), their advanced characterization using attosecond metrology, the buildup of integrated attosecond beamlines stable and reliable for users

III) Develop new types of spectroscopies (high harmonic spectroscopy, attosecond photoionization spectroscopy) making use of the attosecond emission in order to study ultrafast electronic and nuclear dynamics in the gas phase as well as in the solid phase.

IV) Develop new (lensless) imaging techniques in the XUV with high temporal (atto/femto) and spatial (nm) resolutions allowing the observation of various dynamical processes (spin reversal of magnetic nano-domains, biological cell imaging)

V) Study high harmonic generation in solids (semiconductors, dielectrics, 2D materials: graphene, MoSe2) for applications to: ’all-solid-state’ attosecond emission, spatio-temporal manipulations, nanoplamonics, PHz optoelectronics…

Research topics

Template part has been deleted or is unavailable: elements/documents-associes

Membres

Projets

  • ANR ATTOCOM project (English)

    ANR ATTOCOM project (English)

    HHG in semiconductor crystals High-order laser harmonic generation (HHG) in semiconductor crystals is a new source of short wavelength, ultrashort duration (femtosecond to attosecond) pulses at very high rates, enabling us to track ultrafast electronic dynamics in complex materials. Compared with HHG in gases, solid-state sources promise more advanced control and greater versatility of this…

  • ANR NANOLITE project

    ANR NANOLITE project

    Laser platform for EUVmetrology Created in January 2020, the NANOLITE joint laboratory, funded by the French National Research Agency (ANR) and bringing together CEA and the company Imagine Optic, is developing original solutions for optical metrology at short wavelengths. The aim of the NanoLite joint laboratory is to bring together an academic laboratory with expertise…

  • ANR TOCYDYS

    ANR TOCYDYS

    Dynamique du solide au cycle optique – TOCYDYS

  • Ion Pairs

    Ion Pairs

    Ion Pairs Ion pairs are ubiquitous in Nature, from sea water and aerosols, to living organisms. Being the very first step of crystallization of ionic species and influencing the properties of…

  • OPTOLOGIC (2020-2024) – H2020 FET OPEN

    OPTOLOGIC (2020-2024) – H2020 FET OPEN

    The aim of this project is to develop a new technology for energy-efficient logic operations based on the use of light-induced and light-controlled topology in two-dimensional materials. This will create a new technology platform that exploits the best aspects of topology, optoelectronics and quantum materials by combining i) topology protection to achieve dissipation-free electronic transport,…

  • TUNIFOLDS

    TUNIFOLDS

    TUNIFOLDS : Building blocks of foldamers in the gas phase Contacts M. Mons, V. Brenner This topic capitalizes on the team’s achievements and in particular its pioneering role in the laser…

Domaines Techniques

  • Attosecond beamlines

    Attosecond beamlines

    The ATTOphysics Group is the Coordinator of the brand new national facility ATTOLab. Initiated by an Equipment of Excellence (Equipex) program of the National Research Agency (ANR), it gathers nine…

  • FLUME: Fluorescence Upconversion of Molecular Excited States

    FLUME: Fluorescence Upconversion of Molecular Excited States

    The FLUME (Fluorescence upconversion) platform is a special facility for obtaining time-resolved fluorescence spectra of condensed-phase molecules, enabling the study of molecular kinetics on the femtosecond scale. The system is based on the fluorescence conversion technique. It uses a conventional Ti:S oscillator that produces ~100 femtosecond pulses at 800 nm, which are then doubled or…

  • Laser

    Laser

    The femtosecond laser facilities of the DRECAM offer to the national and european researchers, ultra short pulse duration and high intensity laser lines instrumented by numerous diagnostics. These…

  • Nanolight Platform

    Nanolight Platform

    Nanolight installation LIDYL’s NANOLIGHT platform has been installed in a new 85 m2 laboratory on the CEA Orme des Merisiers site. Based on a Ytterbium fiber laser with a 100 kHz repetition rate,…

  • SLIC: our support teams

    SLIC: our support teams

    The laser platforms and instrumentation developed and implemented at LIDYL are highly technical devices requiring high-quality technical support. This support role is grouped at LIDYL within the SLIC group. It includes the essential technical support needed to supply state-of-the-art lasers and manage laser platforms for internal (LIDYL) and external (national and international) users, the mechanical…

  • UHI100 and FAB1-10 laser management

    UHI100 and FAB1-10 laser management

    Managing our laser platforms For over thirty years, LIDYL has owned and operated a fleet of high-level laser platforms based on intense femtosecond lasers. The laboratory’s objective has always been to develop its platforms in such a way as to reconcile reliability and technological progress. Laser management is handled by the user team for medium-sized…

Thèses

Thèmes de recherche

  • Physics and life

    Physics and life

    Threeresearch programsof the IRAMIS found an natural extension towards biology: Molecular engineering, where studies of co-operative interactions of molecules in solution found a direct extension…

  • SLIC: Post-compression activity

    SLIC: Post-compression activity

    Description Post-compression of sub-10fs pulses has been a major research focus of our team for several years. The first major development concerns the study, design and implementation of a post-compression device on the SE1 channel of the ATTOLab platform’s FAB1-10 laser, enabling pulses of energy up to 8 mJ to be coupled into a 2m-long…

  • Titanium-Sapphire CPA amplifiers

    Titanium-Sapphire CPA amplifiers

    One of our main R&D programs concerns the development of intense Titanium-Sapphire lasers at high power, medium and high frequency (1 to 10 kHz) and stabilized in CEP (Carrier Envelope Phase). Together with Amplitude Technologies in the joint R&D laboratory “IMPULSE”, we have studied and developed new amplification architectures corresponding to the medium-term needs identified…

Publications