Thesis
Quantum computing with nuclear spins
New computing paradigms, circuits and technologies, incl. quantum
Mesoscopic physics
Nuclear spins in solids are amongst the quantum systems with the longest coherence times, up to minutes or even hours, and as such are attractive qubit candidates; however, controlling and reading out individual nuclear spins is highly challenging. In our laboratory, we have developed a new way to do so. The nuclear spin qubits are interfaced by an electron spin ancilla to which they are coupled by the hyperfine interaction. The electron spin is then measured by microwave photon counting at millikelvin temperatures [1,2]. Nuclear-spin single-shot readout is performed via the electron spin [3], and coherent control is achieved through the use of microwave Raman transitions [4]. The electron spins are Er3+ ions in a CaWO4 crystal, and the nuclear spins are 183W atoms in the matrix, which have a spin 1/2.
[1] E. Albertinale et al., Nature 600, 434 (2021)
[2] Z. Wang et al., Nature 619, 276 (2023)
[3] J. Travesedo et al., arxiv (2024)
[4] J. O’Sullivan et al., arxiv (2024)
[1] E. Albertinale et al., Nature 600, 434 (2021)
[2] Z. Wang et al., Nature 619, 276 (2023)
[3] J. Travesedo et al., arxiv (2024)
[4] J. O’Sullivan et al., arxiv (2024)
SL-DRF-25-0441
M2 physique quantique
October 1 2025
Paris-Saclay
Physique en Île-de-France (EDPIF)
Saclay
CEA
Direction de la Recherche Fondamentale
Institut rayonnement et matière de Saclay
Service de Physique de l’Etat Condensé
Groupe Quantronique