Thesis

X-ray diffusion assisted by Artificial Intelligence: the problem of the representativeness of synthetic databases and the indistinguishability of predictions.

Artificial intelligence & Data intelligence
Advanced nano characterization
The advent of artificial intelligence makes it possible to accelerate and democratize the processing of small-angle X-ray scattering (SAXS) data, an expert technique for characterizing nanomaterials that allows to determine the specific surface area, volume fraction and characteristic sizes of structures between 0.5 to 200 nm.

However, there is a double problem around SAXS assisted by Artificial Intelligence: 1) the scarcity of data requires training the models on synthetic data, which poses the problem of their representativeness of real data, and 2) the laws of physics stipulate that several candidate nanostructures can correspond to a SAXS measurement, which poses the problem of the indistinguishability of predictions. This thesis therefore aims to build an artificial intelligence model adapted to SAXS trained on experimentally validated synthetic data, and on the expert response which weights the categorization of predictions by their indistinguishability.
SL-DRF-25-0374
Formation de base en intelligence artificielle, Python
October 1 2025
Paris-Saclay
Sciences Chimiques: Molécules, Matériaux, Instrumentation et Biosystèmes (2MIB)
Saclay
CEA
Direction de la Recherche Fondamentale
Institut rayonnement et matière de Saclay
Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie
Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire
CEA
Phone: 0169085489
Email:
CEA
Phone: 0169085489
Email: