Thesis

Hyperpolarized Xenon NMR to probe the functionality of biological barriers

Medical imaging
Health and environment technologies, medical devices
Optical pumping of xenon, giving rise to an intense NMR signal, is a specialty of the LSDRM team. Xenon, which is soluble in biological media, has a wide range of chemical shifts, which we use here to study the properties of cell barriers. Numerous pathologies stem from an alteration of these barriers.

In this thesis, we aim to develop a specific methodology using hyperpolarized xenon to study the functionality (integrity, permeability, selectivity) of biological barriers, using in vitro and in vivo spectroscopy and imaging. The thesis will be divided into two parts: in vitro, the aim will be to develop a device and NMR protocols for studying model cell assemblies; in vivo, studies on rodents will enable us to assess xenon’s ability to reach organs more or less close to the lungs while maintaining its polarization, and to measure kinetics across barriers. This topic will enable major instrumental and methodological advances, as well as a deepening of our knowledge of selective transport processes at different biological barriers.
SL-DRF-25-0357
Master2 en biophysique imagerie médicale
October 1 2025
Paris-Saclay
Sciences Chimiques: Molécules, Matériaux, Instrumentation et Biosystèmes (2MIB)
Saclay
CEA
Direction de la Recherche Fondamentale
Institut rayonnement et matière de Saclay
Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie
Laboratoire Structure et Dynamique par Résonance Magnétique (LCF)
CEA
Email: