Stephane GUIZARD

Fonction

Chercheur au Laboratoire Interations Dynamique Lasers (LIDYL), département IRAMIS, au CEA, à Saclay.

Research topics/Sujets de recherche

  • Ultrafast processes in solids
  • Laser-matter interaction
  • Excitation and relaxation mechanims in wide band gap dielectrics
  • Laser induced damage and Optical breakdown
  • Femtosecond spectroscopy (interferometry, absorption, two-colour photoemission, luminescence..)

CV

  • 2020- 2023: Coordinator of the ANR research project “TOCYDYS”: Towards Optical CYcle Dynamics in Solids
  • 2018-…: Resercher at LIDYL in the DICO group (CEA-CNRS-Université Paris Saclay).
  • 2009-2012: Partner of the ANR the research Project FLAG (Femtosecond Laser Application for Glasses)
  • 2009: Habilitation (HDR): “From point defect to laser induced breakdown”.
  • 2007-2010: Coordinator of the ANR research Project NANOMORPHING
  • 2004-20018: researcher at Laboratoire des Solides Irradiés (CEA-Ecole Polytechnique-CNRS)
  • 2000-2004: Visiting researcher at CELIA, CNRS-Université de Bordeaux.
  • 1997: invited Scientist, Prof. Tanimura, University of Nagoya, Japan.
  • 1990-1999: Permanent reserch position at CEA, Direction de Sciences de la Matière, DRECAM/SRSIM, group of Guillaume Petite.
  • 1989: PhD at Laboratoire Photophysique Moléculaire (now ISMO), Université Paris-Sud, under the supervision of Prof. Dolorès Gauyacq: “Zeeman effect on Rydbgerg states of NO”
  • 1986: Master “Lasers, Atoms and Molecules“, université Paris Sud.

Principaux résultats scientifiques – Main scientific achievements

The aim of my work is to study fundamental aspect of the interaction between intense laser pulses and solids, in particular wide band gap dielectrics.

More precisely, it is about imagine, built and drive experiment allowing to better understand all mechanisms form the initial excitation until the complete relaxation of the solid.

The experiments make use of femtosecond lasers, that give access both to “high” intensities and to real time observations, by means of time resolved pump and probe measurements, of the solid relaxation. We also use VUV pulses coming from high order harmonic generation, broadly extending the accessible energy domain, and opening possibility to achieve extreme – attosecond- time resolution.

The main scientific achievements concern:

  • the mechanism of electronic interbande excitation [see ref. 2 below] and laser heating in the conduction band [1,6,9]
  • Electronic relaxation within the conduction band [3,5,10]
  • Dynamics of point defects generation [2, 4, 11]
  • High excitation density effects [11], and finally, optical breakdown [7,8,12,13,14,15].
  • Original double pulse investigation of energy deposition and mechanisms leading to optical breadown [12,13,14]
  • First observation of laser induced impact ionization and avalanche [15].

Principales publications / Main publications:

  1. Direct observation of laser induced avalanche in SiO2, S. Guizard, A. Bildé, A. Mouskeftaras, S. Klimentov, under press.
  2. Ultrafast Breakdown of dielectrics: Energy absorption mechanisms investigated by double pulse experiments,
    S. Guizard, S. Klimentov, A. Mouskeftaras, N. Fedorov, G. Geoffroy, G. Vilmart, Applied Surf.Sci., 336(1) (2015) 206.
  3. Mechanisms of femtosecond laser ablation of dielectrics revealed by double pump-probe experiment,
    Mouskeftaras, A; Guizard, S ; Fedorov, N ; Klimentov, S; Applied Phys.A: Mat. Scie. and Process. 110 (2013) 709.
  4. Exciton-exciton interactions in CdWO4 irradiated by intense femtosecond VUV pulses,
    M. Kirm, V. Nagirnyi, E. Feldbach, M. De Grazia, B. Carré, H. Merdji, S. Guizard, J. Gaudin, G. Geoffroy, N. Fedorov, P. Martin, A. Vasil’ev, A. Belsky, Phys; Rev. B 79 (2009) 233103.
  5. Photoconductivity and photoemission studies of diamond irradiated by ultrashort VUV pulses,
    J. Gaudin, G. Geoffroy, S. Guizard, G. Petite, S.M. Klimentov, S.V. Garnov, P.A. Pivovarov, B. Carré, A. Belsky & P. Martin, Appl. Phys. B 78, p.1001, 2004.
  6. Heating of conduction band electrons by intense femtosecond laser pulses,
    A. Belsky, P. Martin, H. Bachau, A. N. Vasil’ev, B. N. Yatsenko, S. Guizard, G. Geoffroy and G. Petite, Europhys. Lett. 67 (2004) 301.
  7. Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles,
    S.Guizard, A.Semerok, J.Gaudin, M.Hashida, P.Martin, F.Quéré, App.Surf.Science 186 (2002) 364.
  8. Time-resolved study of laser-induced breakdown in dielectrics,
    F. Quéré, S. Guizard and Ph. Martin, Europhys. Lett. 56(1) (2001) 138.
  9. Infrared photoemission from a pure gold surface: Validation of the lucky-electron model,
    F. Pisani, J. L. Fabre, S. Guizard, P. Palianov, Ph. Martin, F. Glotin, and J. M. Ortega, Phys. Rev. Lett. 87 (2001) 187403.
  10. Hot-electron relaxation in quartz using high-order harmonics,
    F. Quéré, S. Guizard, Ph. Martin, G. Petite, H. Merdji, B. Carré, J-F. Hergott, and L. Le Déroff, Phys. Rev. B 61 (2000) 9883.
  11. Comment on “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics”,
    Petite, G ; Guizard, S ; Martin, P ; Quere, F, Phys. Rev. Lett., 83 (1999) 5182.
  12. Subpicosecond Study of defect creation in wide-band-gap insulators,
    P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, Phys. Rev. B 55 (1997) 5799.
  13. Electron relaxation in the conduction band of wide-band-gap oxides,
    Ph. Daguzan, P. Martin, S. Guizard, and G. Petite, Phys. Rev. B 52, (1995) 17099.
  14. Space-time observation of an electron gas in SiO2,
    P. Audebert, Ph. Daguzan, A. Dos Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, Physical Review Letters 73, (1994) 1990.
  15. Direct observation of multiple photon absorption by free electrons in a wide band gap insulator under strong laser irradiation,
    Ph. Daguzan, S. Guizard, K. Krastev, P. Martin, G. Petite, A. Dos Santos, and A. Antonetti, Phys. Rev. Lett. 73 (1994) 2352.

Etudiants en thèse – Former PhD students

  • Allan Bildé : Etude des mécanismes fondamentaux d’interaction entre implsions lasers ultra-brèves et matériaux diélectriques ; 2018, Now Professor, Classes préparatoires, Caen.
  • Alexandros Mouskeftaras : Study of the physical mechanisms involved in the femtosecond laser optical breakdown of dielectric materials, 2013, Now CNRS Research position at Laboratoire LP3, Marseille.
  • Aline Ouzounian : Propriétés électroniques de nanoparticules fonctionnalisées, 2011, Now at Thorlab company.
  • Marco De Grazia : Application du rayonnement harmonique à l’interaction UVX – solide : dynamique de relaxation à haute densité d’excitation et endommagement de surface, soutenue en 2007. Now at Saint-Gobain company
  • Jérôme Gaudin : Processus d’excitation et de relaxation dans les solides diélectriques excités par des impulsions IR et XUV ultracourtes, soutenue en 2005. Now : Professor at Université Bordeaux, CELIA Laboratory
  • Fabien Quéré : Etude des mécanismes d’excitation électronique associés au claquage des diélectriques induit par un champ laser intense, soutenue en 2000. Now : research position at CEA.
  • Philippe Daguzan : Dynamique ultrarapide des porteurs excités dans les solides à grande bande interdite, soutenue en 1996. Now at EDF company.