7 sujets /NIMBE/LICSEN

Dernière mise à jour : 16-07-2018


 

Films polymères bactériostatiques

SL-DRF-18-0680

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l'Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Geraldine CARROT

Marie-Noelle BELLON-FONTAINE

Date souhaitée pour le début de la thèse : 01-10-2017

Contact :

Geraldine CARROT

CEA - DRF/IRAMIS/NIMBE/LICSEN

01 69 08 21 49

Directeur de thèse :

Marie-Noelle BELLON-FONTAINE

AgroParisTech - MICALIS/ INRA/ AgroParisTech

Page perso : http://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=carrot

Labo : http://iramis.cea.fr/nimbe/licsen/

La prolifération microbienne représente une importante préoccupation dans de nombreuses applications commerciales, en particulier l'emballage alimentaire où la détérioration du produit est étroitement liée à des enjeux à la fois économiques et environnementaux (diminution des déchets alimentaires en augmentant la DLC, date limite de consommation). Dans ce domaine particulier, le défi est double: 1-limiter la croissance de la flore totale (pour éviter la prolifération responsable de la détérioration), et 2-préserver une certaine quantité de bactéries endogènes utiles pour une maturation favorable du produit alimentaire frais. L'effet attendu est donc davantage bactériostatique que purement antibactérien. Nous avons besoin de matériaux qui combinent à la fois des propriétés attractives et biocides. Dans ce contexte, les polymères cationiques stables sont particulièrement intéressants (faible CMI en solution, Concentration Minimale d'Inhibition). Le challenge ici sera de développer une méthode de greffage ou de fonctionnalisation robuste et efficace afin d’incorporer des polymères sur divers substrats tels que le verre, l'inox et en particulier, les polyoléfines qui sont largement utilisés dans les emballages alimentaires. Ce projet de thèse implique deux Laboratoires académiques: CEA/NIMBE-LICSEN, expert en chimie de surface et AgroParisTech/INRA-MICALIS spécialisé dans l'étude de la bio-adhésion et des biofilms. Des partenaires industriels sont également impliqués dans ce projet.

Nano-objets polymères radiosensibles

SL-DRF-18-0681

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l'Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Geraldine CARROT

Jean-Philippe RENAULT

Date souhaitée pour le début de la thèse : 01-10-2017

Contact :

Geraldine CARROT

CEA - DRF/IRAMIS/NIMBE/LICSEN

01 69 08 21 49

Directeur de thèse :

Jean-Philippe RENAULT

CEA - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 50

Ce projet repose sur le développement de nouveaux systèmes de relargage de principes actifs basés sur la dégradation de polymères par irradiation. Ce type de stimulus n'a jamais été exploré auparavant, pour de telles applications. Cela permet d'envisager un vrai couplage radiothérapie/ chimiothérapie qui se différencie du simple relargage ciblé. L'objectif est de réaliser la synthèse d'une bibliothèque de copolymères amphiphiles originaux, avec un bloc polymère soluble dans l'eau/biocompatible, et un autre bloc hydrophobe/radiosensible. L'auto-assemblage dans des micelles ou des vésicules mènera à des objets avec un coeur radiosensible où sera localisé le principe actif. Le premier avantage de ces nouveaux systèmes est de contrôler plus finement le ciblage des principes actifs vers les cellules tumorales afin de limiter les effets secondaires liés à la chimiothérapie et la radiothérapie, via la position du faisceau d'irradiation et/ou les doses absorbées.

Activité catalytique de couches actives sans platine pour piles à combustible à membrane d'échange de protons (PEMFC)

SL-DRF-18-0895

Domaine de recherche : Chimie physique et électrochimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l'Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Renaud CORNUT

Bruno JOUSSELME

Date souhaitée pour le début de la thèse : 01-09-2018

Contact :

Renaud CORNUT

CEA - DRF/IRAMIS/NIMBE/LICSEN

01 69 08 91 91

Directeur de thèse :

Bruno JOUSSELME

CEA - DRF/IRAMIS/NIMBE/LICSEN

0169 08 91 91

Page perso : http://iramis.cea.fr/Pisp/renaud.cornut/

Labo : http://iramis.cea.fr/nimbe/licsen/

L’avenir de notre approvisionnement en énergie dépend de notre capacité à innover dans la mise au point de systèmes de conversion et de stockage de l’énergie. Dans ce domaine, les matériaux électrocatalytiques sont la pierre angulaire de nombreux défis -en particulier pour les piles à combustible- car ils offrent des solutions adaptées pour effectuer efficacement des réactions chimiques complexes. Le projet introduit et met en œuvre une nouvelle stratégie s’appuyant sur la microscopie électrochimique et la simulation numérique pour trouver de nouvelles briques élémentaires à bas coût: l’analyse combinée de nano-objets permettra d'identifier de nouvelles espèces électrocatalytiques, ce qui permettra au final de proposer des dispositifs ayant des performances améliorées.

Etude par microscopie électrochimique du transport multiphase dans une couche électrocatalytique.

SL-DRF-18-0442

Domaine de recherche : Chimie physique et électrochimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l'Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Renaud CORNUT

Bruno JOUSSELME

Date souhaitée pour le début de la thèse : 01-09-2018

Contact :

Renaud CORNUT

CEA - DRF/IRAMIS/NIMBE/LICSEN

01 69 08 91 91

Directeur de thèse :

Bruno JOUSSELME

CEA - DRF/IRAMIS/NIMBE/LICSEN

0169 08 91 91

Page perso : http://iramis.cea.fr/Pisp/renaud.cornut/

Labo : http://iramis.cea.fr/nimbe/licsen/

L'émergence de l'hydrogène comme vecteur d'énergie doit contribuer à stopper la pollution due à l'usage de sources d'énergie carbonées dans les transports. Dans les véhicules la conversion en électricité est obtenue par des piles à combustible à membrane échangeuse de proton.



Le but du projet est de rendre celles-ci compatibles avec le marché de masse en surmontant les verrous associés aux cathodes par l’utilisation de nano-objets catalytiques sans métaux nobles. Dans cette approche, il existe une grande diversité de nano-objets, d’additif, et de conditions de mise en forme si bien que la stratégie optimale est très difficile à trouver. Nous allons mettre en place une plateforme électroanalytique pour évaluer en routine les propriétés électrochimiques effectives de matériaux multifonctionnels utilisés dans les piles à combustible, puis produire différents matériaux de manière combinatoire dont l'analyse va permettre de rationaliser les différentes étapes de synthèse des matériaux et d'optimiser leurs performances -avec une attention particulière au vieillissement.

Synthèse et intégration de matériaux dans des capteurs pour la surveillance de la qualité de l'eau

SL-DRF-18-0286

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l'Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Jean-Christophe GABRIEL

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Jean-Christophe GABRIEL

CEA - DRF/IRAMIS/NIMBE/LICSEN

0438780257

Directeur de thèse :

Jean-Christophe GABRIEL

CEA - DRF/IRAMIS/NIMBE/LICSEN

0438780257

Page perso : http://inac.cea.fr/Phocea/Pisp/index.php?nom=jean-christophe.gabriel

Labo : http://iramis.cea.fr/nimbe/licsen/

Voir aussi : https://www.linkedin.com/in/jcpgabriel

Ce sujet se situe dans le contexte d'un des deux seuls projets financés par l'ANR en 2017 sur la thématique des Capteurs pour l'environnement (projet 4WATER). La crise de l'eau constitue le risque n°1 quant à son impact sur la société d'après le « Forum de l'économie mondiale » (01/2015). Dans le projet 4WATER, nous proposons l'élaboration de nouveaux capteurs matriciels à bas coût et multi-cibles. Ces capteurs seront intégrés, à l'aide d'une approche microélectronique, sous forme de transistors MOSFETs sensibles à différents ions choisis en fonction de leur pertinence vis-à-vis de la potabilité de l'eau. Nous proposons ainsi à terme une solution de surveillance multianalytes permanente et peu onéreuse des ressources en eau douce de surface.



Lors de sa thèse, l'étudiant(e) aura à synthétiser des matériaux par diverses techniques de synthèses issues de la chimie et devra les mettre en solution (formulation d’encres). S’en suivra une intégration de ces composés dans des dispositifs actifs (capteurs pour la qualité de l’eau) ainsi que de tester des capteurs ainsi formés. Selon le temps restant et le dynamisme de l’étudiant(e), Il s’agira aussi d’étudier les propriétés physico-chimiques (structure, taille etc…) des fluides complexes obtenus ou alors il se fera en collaboration avec un collaborateur du projet. L’étudiant(e) sera exposé à un environnement pluridisciplinaire et amené(e) à réaliser des expériences dans des domaines variés tels que la chimie inorganique, la physico-chimie, la micro/nano-fabrication en salles blanches, les méthodes de nano-caractérisation et de tests électriques/électroniques. Cette thèse est donc une excellente opportunité de croissance professionnelle tant d'un point de vue des connaissances, que du savoir-faire et de la notoriété acquise dans la communauté scientifique, et offre d’autre part de bonnes perspectives via la collaboration industrielle entrant dans ce projet.

Intégration de catalyseurs sans métaux nobles dans un assemblage PV-Electrolyseur

SL-DRF-18-1007

Domaine de recherche : Matériaux et applications
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l'Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Bruno JOUSSELME

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Bruno JOUSSELME

CEA - DRF/IRAMIS/NIMBE/LICSEN

0169 08 91 91

Directeur de thèse :

Bruno JOUSSELME

CEA - DRF/IRAMIS/NIMBE/LICSEN

0169 08 91 91

Page perso : http://iramis.cea.fr/Pisp/bruno.jousselme/

Labo : http://iramis.cea.fr/nimbe/licsen/

Le projet de thèse portera sur l'intégration de catalyseurs sans métaux nobles, stables et efficaces dans un électrolyseur. Les catalyseurs envisagés pour l'oxydation de l'eau et la réduction des protons et développés récemment par l'ICAQ, l'Uppsala University et le CEA-Saclay (CEA) sont soit des complexes métalliques immobilisés dans des MOF ou sur des nanotubes de carbone, soit des oxydes ou des chalcogénures métalliques. Ces catalyseurs seront formulés et déposés soit sur des électrodes ou des membranes (fournies par l'Université de Stuttgart (USTUTT)) selon des procédés à coût bas de fabrication tels que l'impression jet d'encre, le spray ... L'optimisation des performances catalytiques des électrodes sera également étudié par l'ajout d'additifs conducteurs et le formulation des encres. Les électrolyseurs fabriqués dans ce travail seront finalement alimentées par des cellules PV à pérovskite développées par Solaronix (SOLAR) et par la Fondazione Istituto Italiano di technologia (IIT).

Dispositifs opto-electroniques hybrides à base de nanotubes de carbone pour la photonique sur silicium

SL-DRF-18-0445

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l'Energie (NIMBE)

Laboratoire Innovation, Chimie des Surfaces Et Nanosciences (LICSEN)

Saclay

Contact :

Arianna FILORAMO

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Arianna FILORAMO

CEA - DRF/IRAMIS/NIMBE/LICSEN

01-69-08-86-35

Directeur de thèse :

Arianna FILORAMO

CEA - DRF/IRAMIS/NIMBE/LICSEN

01-69-08-86-35

Page perso : http://iramis.cea.fr/nimbe/Phocea/Membres/Annuaire/index.php?uid=filoramo

Labo : http://iramis.cea.fr/nimbe/LICSEN/

Les nanotubes de carbone mono-paroi présentent des propriétés électroniques remarquables, qui ont fait l’objet d’études intensives aussi bien en recherche fondamentale que pour leurs applications en nanoélectronique. Plus récemment, avec le développement d’une meilleure maitrise du matériau d’autres perspectives et champs d’applications se sont ouverts. C'est notamment le cas en optique et en optoélectronique où les nanotubes de carbone constituent un matériau de choix.



Les nanotubes de carbone présentent en effet des transitions optiques dont l'énergie varie en fonction de leur diamètre et de leur chiralité et qui se situent généralement dans le proche infrarouge [1, 2]. Cette caractéristique combinée à leurs propriétés électriques exceptionnelles fait que les dispositifs optoélectroniques à base de nanotubes de carbone suscitent beaucoup d’intérêt [3, 4, 5]. Ces dispositifs permettraient d’envisager une avancée décisive pour les futurs circuits intégrés en combinant des propriétés électriques et des propriétés optiques/optoélectroniques/opto-mécaniques dans un seul type de matériau. Dans ce projet associant le laboratoire LICSEN de la DRF et le laboratoire LCO de la DRT, nous comptons tout d’abord contribuer à cette thématique par l’étude des propriétés d’électroluminescence et de photo-courant de nanotubes triés en chiralité [6-14]. La compréhension de ces phénomènes est primordiale pour réaliser des photo-détecteurs et des LEDs performantes, voire des sources de type laser.



Nous considèrerons ensuite plus particulièrement les dispositifs hybrides opto-électro-mécaniques et nous les intégrerons dans une plateforme photonique silicium. Le LICSEN (DRF) est très bien positionné sur la thématique des nanotubes de carbone et le LCO (DRT) est un expert reconnu dans le domaine de l’électromécanique, de la photonique et plus récemment dans celui de l’opto-mécanique.



[1] S. M. Bachilo et al. Science 298, 2361 (2002) ;

[2] O’Connell M. J. et al., Science 297, 593 (2002) ;

[3] Freitag et al., NanoLetter 6, 1425 (2006) ;

[4] Mueller et al., NatureNanotech. 5, 27 (2010) ;

[5] S.Wang et al. Nano Letter 11, 23 (2011);

[6] Nish, A. et al. Nat. Nanotechnol. 2, 640 (2007) ;

[7] Chen, F. et al. Nano Lett. 7, 3013 (2007) ;

[8] Nish, A. et al. Nanotechnology 19, 095603 (2008) ;

[9] Hwang, J.-Y. et al., J. Am. Chem. Soc. 130, 3543-3553 (2008) ;

[10] Gaufrès E. et al., Appl. Phys. Lett. 96, 231105 (2010) ;

[11] Gao, J. et al. Carbon 49, 333 (2011);

[12] Tange M. et al. ACS Appl. Mater. Interfaces 4, 6458 (2012)

[13] Sarti F. et al Nano Research 9, 2478 (2016)

[14] Balestrieri M. et al Advanced Functional Materials 1702341 (2017).

• Chimie

• Chimie physique et électrochimie

• Matière molle et fluides complexes

• Matériaux et applications

• Physique du solide, surfaces et interfaces

 

Retour en haut