Thèse
Synthèse de nanodiamants à façon pour la production d’hydrogène par photocatalyse
Matière ultra-divisée, physico-chimie des matériaux
Matériaux et applications
Les nanoparticules de diamant (nanodiamants) sont utilisées en nanomédecine, dans les technologies quantiques, les lubrifiants et les composites avancés [1-2]. Nos résultats récents montrent que le nanodiamant peut également agir comme photocatalyseur, permettant la production d’hydrogène sous illumination solaire [3]. Malgré sa large bande interdite, sa structure de bande est adaptable en fonction de sa nature et de la chimie de sa surface [4]. De plus, l’incorporation contrôlée de dopants ou de carbone sp2 conduit à la génération d’états dans la bande interdite qui améliorent l’absorption de la lumière visible, comme l’a montré une étude récente impliquant notre groupe [5]. Les performances photocatalytiques des nanodiamants dépendent donc fortement de leur taille, de leur forme et de leur concentration en impuretés chimiques. Il est donc essentiel de développer une méthode de synthèse de nanodiamants « sur mesure »,dans laquelle ces différents paramètres peuvent être finement contrôlés, afin de fournir un approvisionnement en nanodiamants «contrôlés », qui fait actuellement défaut.
Cette thèse vise à développer une approche bottom-up pour la croissance de nanodiamants en utilisant un template sacrificiel (billes de silice) sur lequel des germes de diamant Au cours de la thèse, la nature des germes de diamant (nanodiamants [taille ˜ 5 nm] synthétisés par détonation ou HPHT, ou dérivés moléculaires de l’adamantane) ainsi que les paramètres de croissance CVD seront étudiés afin d’obtenir des CVD-NDs mieux contrôlés en termes de cristallinité et de morphologie. Les nanodiamants dopés au bore ou à l’azote seront également étudiés, en jouant sur la composition de la phase gazeuse. La structure cristalline, la morphologie et la chimie de surface seront étudiées au CEA NIMBE à l’aide du MEB, de la diffraction des rayons X et des spectroscopies Raman, infrarouge et de photoélectrons. Une analyse détaillée de la structure cristallographique et des défauts structurels sera effectuée par microscopie électronique à transmission à haute résolution(collaboration). Les FNDs CVD seront ensuite exposés à des traitements en phase gazeuse (air, hydrogène) afin de moduler leur chimie de surface et de les stabiliser dans l’eau. Les performances photocatalytiques pour la production d’hydrogène sous lumière visible de ces différents CVD-NDs seront évaluées et comparées en utilisant le réacteur photocatalytique récemment installé au CEA NIMBE.
Références
[1] Nunn et al., Current Opinion in Solid State and Materials Science, 21 (2017) 1.
[2] Wu et al., Angew. Chem. Int. Ed. 55 (2016) 6586.
[3] Marchal et al., Adv. Energy Sustainability Res., 2300260 (2023) 1-8.
[4] Miliaieva et al., Nanoscale Adv. 5 (2023) 4402.
[5] Buchner et al., Nanoscale 14 (2022) 17188.
Cette thèse vise à développer une approche bottom-up pour la croissance de nanodiamants en utilisant un template sacrificiel (billes de silice) sur lequel des germes de diamant Au cours de la thèse, la nature des germes de diamant (nanodiamants [taille ˜ 5 nm] synthétisés par détonation ou HPHT, ou dérivés moléculaires de l’adamantane) ainsi que les paramètres de croissance CVD seront étudiés afin d’obtenir des CVD-NDs mieux contrôlés en termes de cristallinité et de morphologie. Les nanodiamants dopés au bore ou à l’azote seront également étudiés, en jouant sur la composition de la phase gazeuse. La structure cristalline, la morphologie et la chimie de surface seront étudiées au CEA NIMBE à l’aide du MEB, de la diffraction des rayons X et des spectroscopies Raman, infrarouge et de photoélectrons. Une analyse détaillée de la structure cristallographique et des défauts structurels sera effectuée par microscopie électronique à transmission à haute résolution(collaboration). Les FNDs CVD seront ensuite exposés à des traitements en phase gazeuse (air, hydrogène) afin de moduler leur chimie de surface et de les stabiliser dans l’eau. Les performances photocatalytiques pour la production d’hydrogène sous lumière visible de ces différents CVD-NDs seront évaluées et comparées en utilisant le réacteur photocatalytique récemment installé au CEA NIMBE.
Références
[1] Nunn et al., Current Opinion in Solid State and Materials Science, 21 (2017) 1.
[2] Wu et al., Angew. Chem. Int. Ed. 55 (2016) 6586.
[3] Marchal et al., Adv. Energy Sustainability Res., 2300260 (2023) 1-8.
[4] Miliaieva et al., Nanoscale Adv. 5 (2023) 4402.
[5] Buchner et al., Nanoscale 14 (2022) 17188.
SL-DRF-25-0834
1 octobre 2025
Paris-Saclay
Physique et Ingénierie: électrons, photons et sciences du vivant (EOBE)
Saclay
CEA
Direction de la Recherche Fondamentale
Institut rayonnement et matière de Saclay
Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie
Laboratoire Edifices Nanométriques