AttoPhysics

AttoPhysics

Head of Attophysic group : Pascal SALIERES

Scientific goals

In the last ten years, the development of perfectly controlled femtosecond laser pulses at high intensities and few-cycle duration has opened a whole new range of opportunities. Indeed, this allows controlling with fs/as precision their interaction with matter and, in particular, creating secondary sources of XUV radiation in the attosecond range (1 as= 10-18 s) using the high harmonic generation (HHG) process. These advanced femtosecond/attosecond sources allow probing the structure and dynamics of matter on the atomic/electronic timescales and lengthscales (Angström). This has become a hot topic in the scientific community with intense international competition.

Based on the expertise accumulated over 30 years of intense laser-matter studies, the main goals of the Attophysics group in the last five years have been the following:

I) Understand and control the laser-driven rescattering dynamics of an oscillating electron with the ion core, that leads to a number of important processes, such as electron-ion elastic scattering, multiple ionization or recombination with emission of attosecond pulses of XUV light

II) Develop the attosecond technologies, i.e., the synthesis of attosecond sources with controlled properties (polarization, single/multiple pulses separated in space/time, …), their advanced characterization using attosecond metrology, the buildup of integrated attosecond beamlines stable and reliable for users

III) Develop new types of spectroscopies (high harmonic spectroscopy, attosecond photoionization spectroscopy) making use of the attosecond emission in order to study ultrafast electronic and nuclear dynamics in the gas phase as well as in the solid phase.

IV) Develop new (lensless) imaging techniques in the XUV with high temporal (atto/femto) and spatial (nm) resolutions allowing the observation of various dynamical processes (spin reversal of magnetic nano-domains, biological cell imaging)

V) Study high harmonic generation in solids (semiconductors, dielectrics, 2D materials: graphene, MoSe2) for applications to: ’all-solid-state’ attosecond emission, spatio-temporal manipulations, nanoplamonics, PHz optoelectronics…

Research topics

Membres

Aucun résultat

Projets

  • ANR ASAP project (2024-2028)

    ANR ASAP project (2024-2028)

    The ASAP project proposes to explore the quantum properties of light produced by high-order harmonic generation. An optical frequency comb with high average power and a repetition rate of several tens of megahertz will be developed with the aim of producing a light source with unique properties in the extreme ultraviolet range Architecture of the…

  • ANR HELIMAG project (2022-2026)

    ANR HELIMAG project (2022-2026)

    Helical dichroism of magnetic structures High-order harmonic generation (HOGG) has recently made available light sources delivering femtosecond (fs) or attosecond (as) pulses, carrying spin angular momentum (SAM) or orbital angular momentum (OAM). The former are associated with circular polarization and carry unitary angular momentum (AM). The latter have wavefronts whose inclination rotates helically around the…

  • CEFIPRA MultiDAM project (2024-2027)

    CEFIPRA MultiDAM project (2024-2027)

    Tailoring ultra-short light pulses is a promising way of studying fundamental questions about the ultrafast electronic dynamics in matter, with foreseen new technological applications. The current project is advancing attosecond physics by addressing two key bottlenecks: How to generate frequency-tunable attosecond XUV pulses that carry spin or orbital angular momentum? Tunability is crucial for probing…

  • Projet ERC Starting Grant SATTOC (2023-2028)

    Projet ERC Starting Grant SATTOC (2023-2028)

    The ERC Starting Grant SATTOC “Solution ATTOsecond Chemistry” project involves studying the chemical dynamics of solvated systems using state-of-the-art attosecond spectroscopy tools. Attosecond pulses, which can reach the X-ray range, excite electrons in the inner electronic layers of molecules, i.e. as close as possible to atomic nuclei. These excited states of matter are highly ephemeral,…

  • TORNADO project (2023-2027)

    TORNADO project (2023-2027)

    Chiral light-matter interactions – PEPR LUMA : Moonshot TORNADO A multi-scale, multi-dimensional approach to chiral light-matter interactions to enhance chiroptical responses. The former are associated with circular polarization and carry unitary angular momentum (AM). The latter feature wavefronts whose inclination rotates helically around the axis of propagation, and carry any integer value of MA unit.…

Domaines Techniques

  • ATTOLab platform

    ATTOLab platform

    Ultrafast dynamics ATTOLab aims to establish an experimental laser platform for interdisciplinary studies of ultrafast dynamics – electronic and nuclear dynamics on femtosecond (10-15) and atto (10-18) second timescales – in gas-, condensed- and plasma-phase systems. Equipment of excellence ATTOLab was an Equipex funded by the “Investissements d’Avenir 2011” program of the French National Research…

  • SOFOKLE Platform

    SOFOKLE Platform

    The Attophysics group manages the SOFOKLE laser chain, which delivers pulses at a rate of 3 kHz, wavelength 0.8 µm, duration 40 fs, and energy 700 µJ. A post-compression optical bench reduces the duration to 10 fs, with an output energy of 200 µJ. In addition to coulombic explosion and electron diffraction experiments, the laser…

Thèses

Thèmes de recherche