Elaboration et étude des propriétés thermomécaniques de composites à matrice SiC nanostructurée renforcée par des nanotubes de carbone

Le 24 octobre 2014
Types d’événements
Thèses ou HDR
Briac LANFANT
amphithéâtre B33, Centre d’Intégration NanoInnov, avenue de la Vauve, 91120 Palaiseau
Le 24/10/2014
de 14h00 à 14h00

Le carbure de silicium (SiC), grâce à sa légèreté, son caractère réfractaire, sa tolérance à l’oxydation et sa faible absorption des neutrons, constitue un candidat intéressant pour des applications comme l’aéronautique, l’aérospatiale ou le nucléaire du futur. Cependant, son comportement fragile est un inconvénient majeur qu’il convient de dépasser pour ces applications. La réduction de la taille des grains à une échelle nanométrique pourrait contribuer à améliorer son comportement mécanique pour être utilisé sous forme monolithique, en tant que revêtement ou bien encore en tant que matrice dans un composite.

Cette thèse s’inscrit dans ce contexte, et s’intéresse à l’élaboration et à l’étude des propriétés thermomécaniques de composites à matrice SiC nanostructurée renforcée par des nanotubes de carbone.

Dans un premier temps les travaux se sont portés sur l’élaboration et l’étude de l’effet de la nanostructuration de la matrice seule de SiC frittée sans ajout de frittage. Des échantillons nanostructurés (taille moyenne des grains de 100nm) et denses à plus de 95,5% ont été obtenus grâce à la mise en place d’un procédé de dispersion efficace et à l’étude des effets des paramètres de frittage. Associés à ces hautes densités, de très bonnes duretés (jusqu’à 2200Hv) et des ténacités convenables (3MPa.m1/2) ont été atteintes. Ces travaux ont également montré l’importance primordiale de l’effet de polluants fréquemment rencontrés dans les poudres (oxygène et carbone) sur la microstructure et les propriétés mécaniques du SiC. Si l’oxygène, présent sous forme de silice ou d’oxycarbure de silicium semble favoriser les mécanismes de densification, un excès de carbone libre (3,5%m) provoque au contraire une diminution de la taille des grains et des densités. Les propriétés mécaniques (950Hv et 2,4 MPa.m1/2) sont également sensiblement affectées. Une telle dégradation est expliquée par la localisation spécifique du carbone structuré entre les grains de SiC.

La deuxième partie des travaux s’est concentrée sur l’ajout de Nanotubes de Carbone (NTC) dans la matrice SiC nanostructurée dans le but d’améliorer les propriétés mécaniques et de compenser la forte réduction de la conductivité thermique, détériorée par l’augmentation importante de la densité de joints de grains. Des crus chargés jusqu’à 5%m en NTC individualisés et répartis de façon homogène ont été réalisés. De manière similaire au carbone libre, la localisation spécifique des NTC cause une diminution de la taille des grains. L’établissement d’un réseau de percolation de NTC au-dessus de 1%m, associé à la méthode de frittage non conventionnel SPS, permet cependant d’améliorer les densités jusqu’à 97%. L’apport de NTC contribue également à l’obtention de dureté (jusqu’à 2550Hv) et de ténacité (4 MPa.m1/2) plus élevées. Malgré les bonnes propriétés thermiques des NTC, l’augmentation de la densité des joints de grains amoindrit la conductivité thermique de nos composites.

IRAMIS, NIMBE, LEDNA