CEA |   |   |   |   |   |   | webmail : intra - extra |  Accès VPN-SSL | Contact
Laboratoire Léon Brillouin (LLB)
logo_tutelle logo_tutelle 

Le Laboratoire Léon Brillouin (LLB) est un Laboratoire National financé conjointement par le Centre National de la Recherche Scientifique (CNRS) et le Commissariat à l'Energie Atomique (CEA). Ses missions sont :

  • Promouvoir l'utilisation de la diffraction et de la spectroscopie neutronique dans tous les domaines possibles de la recherche fondamentale et appliquée.
  • Accueillir et assister les équipes d'expérimentateurs qui viennent, pour un temps limité, réaliser une expérience grâce à l'un des instruments mis à leur disposition.
  • Maintenir, sur ses propres programmes scientifiques, une recherche de qualité ; développer des collaborations.

Implanté sur le site du CEA/Saclay, le LLB met en oeuvre les spectromètres qui utilisent les neutrons produits par le réacteur Orphée.



Maj : 21/04/2016 (3)

Voir aussi
Geometrical frustration in the pyrochlore lattice: spin liquids and spin ices : In chemically ordered compounds with short-range magnetic interactions, geometrical frustration appears when all interactions cannot be satisfied simultaneously due to the lattice geometry. A well-known example is a triangle of antiferromagnetically coupled spins.
Multiferroic materials : Studies conducted over the past few decades came to the conclusion that ferroelectricity and magnetism tend to be mutually exclusive, and interact only weakly with each other when they do coexist.
Novel electronic and magnetic properties in 4f-electron systems :   4f electrons are known to be more localized than d electrons and subject to strong spin-orbit coupling.
Observation of a magnetic "blue phase" in an itinerant magnet : Blue phases often appear in chiral liquid crystals as arrangements of so-called “double-twist cylinders”, characterized by twisting in all directions perpendicular to the cylinder axis [1].
Strong correlation in CMR manganites : Among the many novel phenomena encountered in strongly-correlated electron systems, specific effects originating from the interplay of different degrees of freedom (lattice, electron charge, spin and orbital angular momentum) have aroused particular interest.
Unconventional superconductivity: neutron spectroscopy and theory : In the last two decades, new superconducting (SC) compounds, exhibiting surprisingly high critical temperatures (Tc), have been discovered. In contrast to conventional superconductors, the SC order parameter is not isotropic, neither in cuprates nor in Fe-based systems.


Retour en haut