06 septembre 2019
Une collaboration entre les équipes du LIDYL au CEA Saclay et de l'ATP du Lawrence Berkeley National Lab (LBNL) vient d'élucider les mécanismes d’absorption d’un faisceau laser ultra-intense, lors de sa réflexion sur un plasma dense formé à la surface d’une cible solide.
10 janvier 2019
L’avènement des lasers femtosecondes (1fs = 10-18s) de puissance avec la technique "Chirped Pulse Amplification" (CPA) [1] permet aujourd’hui de délivrer des intensités lumineuses gigantesques (> 1021 W.
27 mars 2018
Fort de l'expérience développées ces dernières années en simulation de la tranmission d'impulsions lumineuses ultra-courtes à travers des systèmes optiques simples ou relativement complexes, l'équipe PHI du Lidyl propose une méthode pour modifier à volonté et de façon conséquente la vitesse de propagation du maximum d'intensité d'une impulsion lumineuse, cette vitesse pouvant même devenir négative ! Le dispositif proposé est simple et consiste à jouer sur le large domaine spectral que présente une impulsion courte (femtoseconde : 10-15 s) et le chromatisme du dispositif.
17 avril 2017
Les vortex optiques sont des faisceaux de lumière à plan d’onde hélicoïdaux porteurs de moment angulaire orbital (OAM), comme le montre leur capacité à induire un mouvement de rotation de la matière.
18 juillet 2016
Une équipe du CEA Lidyl a réussi à mesurer pour la première fois la structure spatio-temporelle complète d’une impulsion laser de très haute puissance.
14 décembre 2015
Deux équipes du CEA LIDYL et du Laboratoire d'Optique Appliquée (LOA) ont réussi à mettre en évidence pour la première fois l'accélération d'électrons "dans le vide", par un faisceau laser intense.
03 octobre 2015
Les plasmons sont des oscillations collectives électroniques qui peuvent être excitées avec des photons le long d'une interface, par exemple entre une surface solide et le vide.
20 mai 2014
Un enjeu majeur pour l'étude des interactions laser-matière à ultrahaute intensité est de trouver des méthodes simples pour à la fois contrôler ces interactions, et les caractériser à de très petites échelles spatiales (micron) et temporelles (attoseconde à femtoseconde).
08 février 2014
Les recherches sur l’interaction laser-matière à très haute intensité ont deux motivations principales : la compréhension, dans ce régime extrême, de l’interaction fortement non-linéaire entre lumière et matière et l'exploration de ses applications potentielles.
14 octobre 2013
L'interaction d'une impulsion laser intense avec une surface solide fait violemment osciller le cortège électronique, entrainant l'émission de protons.
26 novembre 2012
La dynamique des électrons au sein des atomes et des molécules est extrêmement rapide, typiquement de l'ordre de la centaine d'attosecondes (1 as=10-18 s).
20 septembre 2006
Fabien Quere et le Groupe Physique à Haute Intensité (PHI) - DRECAM – Service de Physique des Atomes et des Molécules (SPAM)
Que se passe t-il lorsqu'un miroir (morceau de verre) est soumis à des impulsions ultra-brèves et ultra-intenses, telles que ses électrons oscillent à des vitesses proches de la vitesse de la lumière ? Ces conditions peuvent être obtenues lors de la seconde réflexion d'une impulsion laser sur un miroir plasma.
19 mai 2003
Gilles Doumy & le groupe PHI, CEA Saclay, DSM/DRECAM/Service de Physique des Atomes et des Molécules (SPAM)
Les impulsions laser ultra-brèves, d'une durée de quelques dizaines de femtosecondes (1 fs = 10-15 s), permettent d'obtenir des puissances considérables avec une énergie par impulsion relativement modeste.


Retour en haut