Faits marquants scientifiques 2015

03 avril 2015

Les sources d’électrons pulsées représentent une alternative intéressante aux sources de photons X pulsées basées sur des systèmes laser de haute intensité.

Nous décrirons les méthodes actuelles de génération de paquets d’électrons ainsi que les techniques de caractérisation des paquets. Les résolutions temporelles et spatiales ultimes qu’il est possible d’atteindre à ce jour seront discutées. Nous exposerons les résultats obtenus lors de notre dernière campagne de mesure sur le serveur ELYSE de l’Université Paris-Sud en 2014, en collaboration avec une équipe de l’ISMO et la start-up ITEOX. Finalement, quelques applications seront mises en perspective.

03 mars 2015

L’imagerie par diffraction cohérente est une technique d’imagerie relativement récente permettant d’obtenir des résolutions spatiales de l’ordre de la longueur d’onde car elle se passe de l’emploi d’éléments optiques potentiellement aberrants. Ainsi, nous avons pu démontrer il y a quelques années une résolution spatiale meilleure que 100 nm en utilisant le rayonnement XUV issu de la génération d’harmoniques d’ordre élevé d’un laser infrarouge (HHG). Cependant, dans les schémas usuels, la résolution est limitée par la largeur spectrale de la source. Nous présenterons un schéma holographique d’imagerie sans lentille permettant de profiter à la fois des propriétés spectrales et temporelles de la HHG. Un placement astucieux de la référence holographique permet ainsi soit de réaliser des mesures résolues spatialement et spectralement en une impulsion laser unique, soit de combiner résolutions spatiale nanométrique et temporelle sub-femtoseconde.

Contact : Willem Boutu (LIDYL/Atto)

12 février 2015

Avec son énergie considérable, un photon de l’ultraviolet extrême ionise toutes les molécules, indépendamment du détail de leur structure énergétique. Pour cette raison les impulsions lumineuses ultrabrèves dans ce domaine spectral sont sans égal pour sonder les processus photochimiques.  Elles donnent notamment accès à des informations sur la structure d’intermédiaires réactionnels éphémères dont les propriétés spectroscopiques sont hors d’atteinte. Grâce à une collaboration entre le Laboratoire interactions, dynamique et lasers – LIDyL (CEA), le Centre lasers intenses et applications - CELIA (CNRS/CEA/Univ. Bordeaux), le synchrotron SOLEIL, et le Laboratoire collisions, agrégats, réactivité - LCAR (CNRS/Univ. Toulouse 3) nous venons de mettre au point une nouvelle source réalisable en laboratoire et qui délivre des impulsions brillantes, cohérentes, ultrabrèves et de polarisation quasi-circulaires dans l’ultraviolet extrême. Pour cela, nous avons utilisé la génération résonante d’harmoniques d’ordre élevé émises par un gaz soumis à des impulsions laser intenses. Aujourd’hui, de la lumière polarisée circulairement n’est produite dans cette gamme de rayonnement que par quelques grands instruments comme les synchrotrons et, à l’exception notable de quelques lasers à électrons libres, uniquement de manière quasi-continue. Les propriétés de polarisation spécifiques de cette nouvelle source laissent envisager des études pompes sonde de processus ayant lieu dans des molécules chirales, c’est-à-dire les molécules qui ne sont pas leur propre image dans un miroir. Le rôle prépondérant de ces molécules en chimie organique et biologie laisse entrevoir de nombreuses applications.

 

http://www.nature.com/nphoton/journal/v9/n2/full/nphoton.2014.314.html

09 janvier 2015

Les faisceaux laser permettent d'explorer la matière par divers type de spectroscopies de lumière (en émission ou absorption) ou électronique (par photoionisation, résolue en angle et/ou en énergie). Les signaux obtenus dépendent des caractéristiques de la lumière (longueur d'onde, polarisation et intensité) et suivent les règles de sélection, imposées par les règles de la mécanique quantique.

La collaboration de chercheurs, rassemblés autour de la chaine laser Aurore du CELIA à Bordeaux, vient de montrer qu'il est possible d'obtenir des impulsions laser femtoseconde (10-15 s) polarisées circulairement, par génération d'harmonique d'ordre élevé dans du SF6. Ceci ouvre la voie à de nouvelles spectroscopies, utile en chimie physique ou biologie (étude de molécules chirales) ou encore en physique du solide (surface et couches minces magnétiques). Ceci est illustré par l'observation du dichroïsme dans l'émission électronique par photoionisation de la molécule chirale de fenchone (essence polycyclique).

02 mars 2015

Les mélanines sont une large classe de biopolymères responsables de la pigmentation chez l’homme. Les mélanines les plus courantes sont l'eumélanine et la phéomélanine, toutes les deux censées protéger les cellules de la peau à l'irradiation UVB, réduisant ainsi le risque de cancer de la peau.

Afin d'obtenir une meilleure compréhension des processus photo-induits impliqués, nous avons entrepris, en collaboration avec une équipe suédoise, une étude par spectroscopie de fluorescence femtoseconde des constituants de l'eumélanine en solution. Ce sont des oligomères de différentes tailles (dimères, trimères, …) formées par la molécule 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Ces expériences ont mis en évidence un mécanisme très complexe impliquant divers processus de transfert de proton intra- et inter-moléculaires.

07 mai 2015

Dans un système hôte-invité, un petit ensemble ‑ l'invité ‑ interagit avec un grand ensemble ‑ l'hôte ‑ qui joue souvent un rôle de thermostat. Suite à l'excitation de l'invité, la relaxation de l'énergie suit diverses voies à déterminer et c'est une question importante qui se rencontre en photophysique, photochimie, photobiologie ou encore en physique de la matière condensée. Les processus associés sont responsables de phénomènes aussi importants et divers que les photo-dommages en biologie, la conversion de l'énergie lumineuse (photosynthèse et cellules photovoltaïques) ou la dégradation de l'information quantique (décohérence) du fait du couplage avec l'environnement.

Le système hôte possédant un très grand nombre de degrés de liberté électroniques et géométriques, aucune approche théorique ne permet de saisir toute la complexité du phénomène de relaxation et de nouvelles méthodes génériques doivent être établies. En physico-chimie l'équipe Dynamique Réactionnelle du LIDyL en collaboration avec le LCPQ de l'IRSAMC, a étudié expérimentalement et modélisé le système hôte-invité bien défini constitué d'un agrégat libre inerte hébergeant un atome ou une molécule. Un tel système présente le grand intérêt de pouvoir être étudié sur toutes les gammes de complexité géométrique et électronique selon que l'on joue avec la taille de l'agrégat hôte ou l'excitation électronique de l'atome hébergé, permettant ainsi de valider l'effort de modélisation.

 

02 mars 2015

Les mélanines sont une large classe de biopolymères responsables de la pigmentation chez l’homme. Les mélanines les plus courantes sont l'eumélanine et la phéomélanine, toutes les deux censées protéger les cellules de la peau à l'irradiation UVB, réduisant ainsi le risque de cancer de la peau.

Afin d'obtenir une meilleure compréhension des processus photo-induits impliqués, nous avons entrepris, en collaboration avec une équipe suédoise, une étude par spectroscopie de fluorescence femtoseconde des constituants de l'eumélanine en solution. Ce sont des oligomères de différentes tailles (dimères, trimères, …) formées par la molécule 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Ces expériences ont mis en évidence un mécanisme très complexe impliquant divers processus de transfert de proton intra- et inter-moléculaires.

12 février 2015

Nous relatons ici une expérience qui s'est déroulée sur l'installation LULI-2000 pendant l'année 2014. L'interaction d'un faisceau laser de 30 à 400 J pendant 1.5 nanoseconde crée un plasma des matériaux sondés qui est analysé à environ 500 µm en avant du point d'impact. Une partie des diagnostiques sert à la caractérisation du plasma, interféromètre, sondes Thomson ionique et électronique, pyromètre optique résolu en temps, et par ailleurs un spectromètre X-dur pour les mesures d'émission spectrale. Les résultats de cette expérience sont confrontés aux simulations utilisant un code hydrodynamique et deux codes "atomiques".

14 décembre 2015

Deux équipes du CEA LIDYL et du Laboratoire d'Optique Appliquée (LOA) ont réussi à mettre en évidence pour la première fois l'accélération d'électrons "dans le vide", par un faisceau laser intense. Cette observation montre qu'il est possible de profiter des très fortes amplitudes de champ électrique des impulsions de lumière laser femtoseconde, que l'on sait aujourd'hui produire, pour accélérer des particules à haute énergie sur de faibles distances.

En concentrant la lumière sur des durées femtosecondes (10-15 s), les impulsions laser peuvent atteindre des puissances lumineuses instantanées considérables (~ 1 PW, soit 1015 W) et donc des amplitudes extrêmement élevées du champ électrique associé (~ TéraV/m, soit 1013 V/m). Comme les vagues en haute mer ne peuvent faire avancer les navires, ce champ, par nature oscillant, ne peut accélérer à de très hautes énergies des particules chargées. Mais comme le surfeur qui va chercher la vague et en avançant avec elle peut continûment profiter de sa pente, l'injection d'électrons relativistes (avec une vitesse très proche de celle de la lumière) dans le faisceau laser peut théoriquement permettre l'accélération recherchée, en profitant pleinement des champs électriques gigantesques associés aux impulsions laser ultracourtes.

De nombreuses équipes de par le monde ont essayé de mettre en évidence ce phénomène, sans pouvoir en apporter la preuve définitive. Cette accélération "dans le vide" de particules chargées par un champ laser intense vient d'être expérimentalement démontrée par une collaboration entre une équipe de l’IRAMIS et le Laboratoire d’Optique Appliquée (ENSTA-X-CNRS) à Palaiseau. L'interaction de l'impulsion laser avec une cible solide (miroir plasma) permet d'obtenir l'injection idéale d'électrons qui, surfant sur l'impulsion laser, atteignent des énergies de l'ordre de 10 MeV sur une distance de 80 µm. Cette première ouvre ainsi la perspective d’utiliser des faisceaux laser intenses pour réaliser des accélérateurs compacts d'électrons de très haute énergie.

 

03 octobre 2015

Les plasmons sont des oscillations collectives électroniques qui peuvent être excitées avec des photons le long d'une interface, par exemple entre une surface solide et le vide. L'onde électromagnétique et les charges oscillent à la même fréquence, mais leurs longueurs d'onde sont différentes. Ainsi pour satisfaire les deux relations de dispersion, une interface possédant une structure périodique régulière est nécessaire, telle que par exemple un réseau de diffraction.

Pour l'accélération de particules avec des impulsions lasers de haute intensité, l’excitation de tels plasmons a été envisagée comme un moyen possible d'augmenter le couplage laser-cible[1]. Dans le cadre d’une collaboration internationale, l’équipe PHI du LIDYL et TSM du LSI ont observé pour la toute première fois dans le domaine relativiste (I>1019 W/cm2) que des plasmons résonnants sont capables d’accélérer à des fortes énergies des paquets d'électrons le long de la surface de ces cibles structurées

03 avril 2015

Après absorption dans l’UV, les biomolécules sont dotées de mécanismes de désactivation des états excités assurant leur photostabilité. Ces processus (ultra)rapides offrent en effet un moyen efficace de dissiper l’énergie sous forme de vibration, évitant ainsi les dommages structurels qui peuvent affecter la fonction biologique. Afin de déterminer et d’analyser les phénomènes physiques élémentaires qui contrôlent la durée de vie des états excités et d’établir le lien dynamique électronique-structure, nous avons développé une approche duale théorie-expérience combinant Chimie quantique et Spectroscopies laser. Le défi théorique de cette approche est double : i) identifier, dans ces systèmes complexes, les mouvements critiques favorisant la relaxation électronique et ii) décrire simultanément d’une façon équilibrée et précise des états électroniques multiples de nature très différente. Pour répondre à ce défi, une stratégie calculatoire multi-étapes et multi-niveaux innovante a été développée. L’application de cette stratégie couplée aux expériences rend alors possible une attribution précise des processus photophysiques de conversion de l’énergie dans les biomolécules.  La compréhension de ces processus de conversion de l’énergie est d’une importance fondamentale et présente un champ d’application potentiel englobant non seulement la biologie mais aussi la photochimie ou bien encore la science des matériaux.



Retour en haut