CEA
CNRS
Univ. Paris-Saclay

Service de Physique de l'Etat Condensé

Salah Bouazizi, Salah Nasr & Marie-Claire Bellissent-Funel

MD simulation and analysis of the pair correlation functions, self-diffusion coefficients and orientational correlation times in aqueous KCl solutions at different temperatures and concentrations,
S. Bouazizi, S. Nasr and M.-C. Bellissent-Funel, J Solution Chem (2024) https://doi.org/10.1007/s10953-024-01366-8

Abstract : In this study, we investigate some structural and dynamical properties of aqueous KCl solutions at different temperatures and concentrations. We study a 1.6 mol·kg–1 aqueous KCl solution at five temperatures and five concentrations at ambient conditions only. Molecular dynamics simulations with the flexible SPC water model were conducted to characterize all partial pair correlation functions, the velocities auto-correlation ones, and the dielectric constants. The analysis of the water pair correlation functions shows a disruption of the H-bond network and a decrease of the oxygen-hydrogen coordination number as temperature or salt concentration increases. The increase of each parameter favors the exchange of molecules between the first and the second hydration shells. Ions pair correlation functions show principally that the fraction of K+-Cl contact ion pairs increases and that of separated ion pairs decreases with increasing temperature or concentration. For all particles, the values of the calculated self-diffusion coefficients rise with temperature and fall with salt concentration. The self-diffusion coefficients of K+ and Cl tend to towards each other at high concentration. Temperature or salt concentration causes a drop in the dielectric constant. For all studied temperatures or salt concentrations, the calculated ratio of the orientational correlation times τ12 for the OH vector indicates that the motion of water molecules can be accounted for by an angular jumps model.

Dans un article publié dans ACS Macro Letters, une équipe de physico-chimistes décrit une nouvelle approche qui utilise les neutrons et la lumière pour suivre in situ l’autoassemblage de polymères amphiphiles dans des conditions proches de l’équilibre. Ces résultats ouvrent de nombreuses possibilités pour observer et mieux comprendre l’organisation de macromolécules biologiques ou synthétiques complexes en milieu aqueux.

 

Les cristaux ioniques à large bande interdite, et donc transparents pour la lumière visible, présentent des états électroniques bien spécifiques au niveau des défauts cristallins (lacune ou interstitiel). Ces "centres colorés" sont optiquement actifs et leur excitation produit une absorption de la lumière dans le domaine visible, responsable de la coloration des cristaux (reconnus alors comme "pierres précieuses"). Comprendre le mécanisme de création de ces centres colorés est important pour maîtriser leur utilisation en tant qu’émetteur ou détecteur de lumière, et également pour la manipulation de leurs propriétés de spin, et leur utilisation potentielle en tant que bit quantique (qubit) pour les applications en informatique quantique.

Dans le nitrure d’aluminium (AlN, présentant un gap de ~ 6 eV), le défaut complexe neutre, constitué d'une lacune / oxygène (VAl-ON), présente les caractéristiques nécessaires pour porter un qubit (système à 2 niveaux). Un tel centre peut se former au cours de la croissance du matériau en présence d’impuretés contenant de l’oxygène ou par irradiation ionique.

Les chercheurs du CIMAP ont étudié la formation de ce type de centre coloré par irradiation en utilisant les ions lourds rapides (SHI) du GANIL. Les irradiations sont réalisées sous différentes atmosphères contrôlées (vide, pression partielle d’oxygène ou de gaz rare) pour étudier les effets couplés de la création de défauts ponctuels et l’introduction/diffusion d'impuretés dans la couche d'AlN. Par un réglage fin de l'atmosphère d'irradiation, l'activation ou l'inhibition de ces centres colorés peuvent être contrôlées.

 

Retour en haut